Community
cancel
Showing results for 
Search instead for 
Did you mean: 
junyi
Beginner
129 Views

Different inference result between Movidius 1 and Movidius 2

OS Platform: Ubuntu 16.04.5 LTS

OpenVINO Version: 2018 R5 (Build date:17 Dec 2018)

 

When running classification_sample, I got unexpected result when using different hardware

I using following command to run classification_sample on CPU

./classification_sample -d CPU -m model.xml -i image.png

and following command on Movidius 1 and Movidius 2

./classification_sample -d MYRIAD -m model.xml -i image.png

I was satisfied that OpenVINO could give me consistent result when using different hardware,

but when I test with Movidius 2 I got unexpected result that didn't align to CPU & Movidius 1

 

CPU Top 5 results

Image image.png

4 1.0000000 label #4

1 0.0000000 label #1

8 0.0000000 label #8

9 0.0000000 label #9

7 0.0000000 label #7


Movidius 1 Top 5 results

Image image.png

4 1.0000000 label #4

1 0.0000000 label #1

8 0.0000000 label #8

9 0.0000000 label #9

7 0.0000000 label #7


Movidius 2 Top 5 results

Image image.png

3 0.3332520 label #3

8 0.3332520 label #8

9 0.3332520 label #9

7 0.0000000 label #7

1 0.0000000 label #1

My question is what cause the inconsistent result

0 Kudos
3 Replies
anchor__jiang
Beginner
129 Views

I met the save problem! 

129 Views

We have similar problem, certainly some NN models compute different, where NCS v2 delivers incorrect results. 

My colleague posted detailed description of the problem here: https://software.intel.com/en-us/forums/computer-vision/topic/801760

almost a month ago, still no reply from Intel.

 

Jakub
Beginner
129 Views

I also faced the problem of incorrect predictions using NCS2 (described at https://software.intel.com/en-us/forums/computer-vision/topic/802216). In my case, I found a workaround of manually editing the XML file generated by the Model Optimizer, but it only works if the model is placed on CPU, not MYRIAD.

Reply