- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi,
According to the steps mentioned here: https://docs.openvino.ai/latest/openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_Object_Detection_API_Models.html
I tried to convert the MaskRCnn model available at: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
command:
mo --saved_model_dir /root/sharedfolder/models/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/saved_model --transformations_config /root/sharedfolder/models/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/mask_rcnn_support_api_v2.4.json --tensorflow_object_detection_api_pipeline_config /root/sharedfolder/models/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/pipeline.config" --reverse_input_channels
The conversion is giving me this error:
[ ERROR ] -------------------------------------------------
[ ERROR ] ----------------- INTERNAL ERROR ----------------
[ ERROR ] Unexpected exception happened.
[ ERROR ] Please contact Model Optimizer developers and forward the following information:
[ ERROR ] Exception occurred during running replacer "ObjectDetectionAPIPreprocessor2Replacement (<class 'openvino.tools.mo.front.tf.ObjectDetectionAPI.ObjectDetectionAPIPreprocessor2Replacement'>)":
[ ERROR ] Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/utils/class_registration.py", line 276, in apply_transform
replacer.find_and_replace_pattern(graph)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/front/tf/replacement.py", line 36, in find_and_replace_pattern
self.transform_graph(graph, desc._replacement_desc['custom_attributes'])
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/front/tf/ObjectDetectionAPI.py", line 837, in transform_graph
assert len(start_nodes) >= 1
AssertionError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/main.py", line 533, in main
ret_code = driver(argv)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/main.py", line 489, in driver
graph, ngraph_function = prepare_ir(argv)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/main.py", line 407, in prepare_ir
graph = unified_pipeline(argv)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/pipeline/unified.py", line 17, in unified_pipeline
class_registration.ClassType.BACK_REPLACER
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/utils/class_registration.py", line 328, in apply_replacements
apply_replacements_list(graph, replacers_order)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/utils/class_registration.py", line 318, in apply_replacements_list
num_transforms=len(replacers_order))
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/utils/logger.py", line 112, in wrapper
function(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/openvino/tools/mo/utils/class_registration.py", line 306, in apply_transform
)) from err
Exception: Exception occurred during running replacer "ObjectDetectionAPIPreprocessor2Replacement (<class 'openvino.tools.mo.front.tf.ObjectDetectionAPI.ObjectDetectionAPIPreprocessor2Replacement'>)":
[ ERROR ] ---------------- END OF BUG REPORT --------------
[ ERROR ] -------------------------------------------------
Please help me resolve this issue and help me to convert the Tensorflow model.
Thanks,
Vishnu
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Vishnu,
Thank you for reaching out to us.
The error occurs due to using a different transformations config file.
The Mask R-CNN Inception ResNet V2 1024x1024 model was trained using TensorFlow 2.2, as stated in TensorFlow 2 Detection Model Zoo.
Thus, the correct transformations config file for the model is mask_rcnn_support_api_v2.0.json, which is to be used for Mask R-CNN topologies trained using the TensorFlow* Object Detection API version 2.0 up to 2.3.X inclusively, as mentioned in Convert TensorFlow Object Detection API Models
For your information, I have converted the same model using the command below:
mo --saved_model_dir /mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/saved_model --transformations_config <openvino_dir>/tools/mo/front/tf/mask_rcnn_support_api_v2.0.json --tensorflow_object_detection_api_pipeline_config /mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/pipeline.config --reverse_input_channels
Here are my results.
Regards,
Megat
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Vishnu,
Thank you for reaching out to us.
The error occurs due to using a different transformations config file.
The Mask R-CNN Inception ResNet V2 1024x1024 model was trained using TensorFlow 2.2, as stated in TensorFlow 2 Detection Model Zoo.
Thus, the correct transformations config file for the model is mask_rcnn_support_api_v2.0.json, which is to be used for Mask R-CNN topologies trained using the TensorFlow* Object Detection API version 2.0 up to 2.3.X inclusively, as mentioned in Convert TensorFlow Object Detection API Models
For your information, I have converted the same model using the command below:
mo --saved_model_dir /mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/saved_model --transformations_config <openvino_dir>/tools/mo/front/tf/mask_rcnn_support_api_v2.0.json --tensorflow_object_detection_api_pipeline_config /mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8/pipeline.config --reverse_input_channels
Here are my results.
Regards,
Megat
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Megat,
Thanks for your reply. I am able to convert the model successfully. Please let me know is there any code/documentation which I can refer, to run inference on the converted MaskRCNN model.
Thanks,
Vishnu
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Vishnu,
You can find the step-by-step instructions to implement a typical inference pipeline with the OpenVINO™ Runtime C++ API here.
For your information, this thread will no longer be monitored since this issue has been resolved. If you need any additional information from Intel, please submit a new question.
Regards,
Megat

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page