- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I was trying run mo_tf and got following error
Common parameters:
- Path to the Input Model: /home/naveen/openvino_models/./petfaces/frozen_inference_graph.pb
- Path for generated IR: /home/naveen/openvino_models/petfaces_IR_BGR
- IR output name: frozen_inference_graph
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP16
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: True
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Offload unsupported operations: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: /home/naveen/openvino_models/./petfaces/pipeline.config
- Operations to offload: None
- Patterns to offload: None
- Use the config file: /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_support.json
Model Optimizer version: 1.5.12.49d067a0
The Preprocessor block has been removed. Only nodes performing mean value subtraction and scaling (if applicable) are kept.
[ ERROR ] -------------------------------------------------
[ ERROR ] ----------------- INTERNAL ERROR ----------------
[ ERROR ] Unexpected exception happened.
[ ERROR ] Please contact Model Optimizer developers and forward the following information:
[ ERROR ] Exception occurred during running replacer "ObjectDetectionAPISSDPostprocessorReplacement (<class 'extensions.front.tf.ObjectDetectionAPI.ObjectDetectionAPISSDPostprocessorReplacement'>)":
[ ERROR ] Traceback (most recent call last):
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/utils/class_registration.py", line 114, in apply_replacements
replacer.find_and_replace_pattern(graph)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/front/tf/replacement.py", line 91, in find_and_replace_pattern
self.replace_sub_graph(graph, match)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/front/common/replacement.py", line 115, in replace_sub_graph
new_sub_graph = self.generate_sub_graph(graph, match) # pylint: disable=assignment-from-no-return
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/extensions/front/tf/ObjectDetectionAPI.py", line 899, in generate_sub_graph
_relax_reshape_nodes(graph, pipeline_config)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/extensions/front/tf/ObjectDetectionAPI.py", line 157, in _relax_reshape_nodes
assert (old_reshape_node.op == 'Reshape')
AssertionError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/main.py", line 325, in main
return driver(argv)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/main.py", line 267, in driver
mean_scale_values=mean_scale)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/pipeline/tf.py", line 248, in tf2nx
class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
File "/opt/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/utils/class_registration.py", line 127, in apply_replacements
)) from err
Exception: Exception occurred during running replacer "ObjectDetectionAPISSDPostprocessorReplacement (<class 'extensions.front.tf.ObjectDetectionAPI.ObjectDetectionAPISSDPostprocessorReplacement'>)":
[ ERROR ] ---------------- END OF BUG REPORT --------------
[ ERROR ] -------------------------------------------------
Model optimizer parameters:
python3 /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py --input_model <path tofrozen_inference_graph.pb> --tensorflow_use_custom_operations_config s<path to ssd_support.json> --data_type=FP16 --output_dir<path output dir> --tensorflow_object_detection_api_pipeline_config <path to pipeline.config> --reverse_input_channels
model: ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi,
i have the same error for convert model with network "mobilenet_ssd_v2".
....
[ ERROR ] Exception occurred during running replacer "ObjectDetectionAPISSDPostprocessorReplacement (<class 'extensions.front.tf.ObjectDetectionAPI.ObjectDetectionAPISSDPostprocessorReplacement'>)":
[ ERROR ] Traceback (most recent call last):
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\utils\class_registration.py", line 114, in apply_replacements
replacer.find_and_replace_pattern(graph)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\front\tf\replacement.py", line 91, in find_and_replace_pattern
self.replace_sub_graph(graph, match)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\front\common\replacement.py", line 115, in replace_sub_graph
new_sub_graph = self.generate_sub_graph(graph, match) # pylint: disable=assignment-from-no-return
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\extensions\front\tf\ObjectDetectionAPI.py", line 899, in generate_sub_graph
_relax_reshape_nodes(graph, pipeline_config)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\extensions\front\tf\ObjectDetectionAPI.py", line 157, in _relax_reshape_nodes
assert (old_reshape_node.op == 'Reshape')
AssertionError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\main.py", line 325, in main
return driver(argv)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\main.py", line 267, in driver
mean_scale_values=mean_scale)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\pipeline\tf.py", line 248, in tf2nx
class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
File "D:\Intel\computer_vision_sdk\deployment_tools\model_optimizer\mo\utils\class_registration.py", line 127, in apply_replacements
)) from err
Exception: Exception occurred during running replacer "ObjectDetectionAPISSDPostprocessorReplacement (<class 'extensions.front.tf.ObjectDetectionAPI.ObjectDetectionAPISSDPostprocessorReplacement'>)":
[ ERROR ] ---------------- END OF BUG REPORT --------------
[ ERROR ] -------------------------------------------------
Have any suggestion for this issue?
Thanks.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
This command worked perfectly fine for me and successfully produced IR:
python .\mo_tf.py --input_meta_graph C:\Intel\other-models\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03\model.ckpt.meta --log_level DEBUG --tensorflow_use_custom_operations_config C:\Intel\computer_vision_sdk_2018.5.456\deployment_tools\model_optimizer\extensions\front\tf\ssd_support.json --data_type=FP16 --tensorflow_object_detection_api_pipeline_config C:\Intel\other-models\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03\ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03\pipeline.config --reverse_input_channels
The major difference between your command and mine is that I'm doing --input_meta_graph and you're doing --input_model.
Thanks for using OpenVino !
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Shubha,
I adopted your approach on tf model ssd_mobilenet_v1_coco_2018_01_28
With the following command I converted properly to the IR with no errors
sudo ./mo_tf.py --input_meta_graph ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt.meta --tensorflow_object_detection_api_pipeline_config ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --tensorflow_use_custom_operations_config ~/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_support.json --model_name ssd_mobilenet_OLI --output_dir ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28 --data_type FP16 --input_shape [1,300,300,3] --reverse_input_channels
The output is promising as below.
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: /home/alberto/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.xml
[ SUCCESS ] BIN file: /home/alberto/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.bin
[ SUCCESS ] Total execution time: 18.04 seconds.
At this stage I try to use this model doing inference with the following command
./object_detection_demo_ssd_async -i /dev/video0 -m ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.xml -d MYRIAD
I get the following error
InferenceEngine:
API version ............ 1.4
Build .................. 19154
[ INFO ] Parsing input parameters
[ INFO ] Reading input(object_detection_demo_ssd_async:18959): GStreamer-CRITICAL **: 00:59:01.431: gst_element_get_state: assertion 'GST_IS_ELEMENT (element)' failed
[ INFO ] Loading pluginAPI version ............ 1.5
Build .................. 19154
Description ....... myriadPlugin
[ INFO ] Loading network files
[ ERROR ] Error reading network: input must have dimensions
any idea how to fix this ? I also tested using as input an mp4 video, but the error is the same.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Olivero, Alberto wrote:Dear Shubha,
I adopted your approach on tf model ssd_mobilenet_v1_coco_2018_01_28
With the following command I converted properly to the IR with no errors
sudo ./mo_tf.py --input_meta_graph ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt.meta --tensorflow_object_detection_api_pipeline_config ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --tensorflow_use_custom_operations_config ~/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_support.json --model_name ssd_mobilenet_OLI --output_dir ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28 --data_type FP16 --input_shape [1,300,300,3] --reverse_input_channels
The output is promising as below.
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: /home/alberto/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.xml
[ SUCCESS ] BIN file: /home/alberto/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.bin
[ SUCCESS ] Total execution time: 18.04 seconds.
At this stage I try to use this model doing inference with the following command
./object_detection_demo_ssd_async -i /dev/video0 -m ~/Scaricati/ssd_mobilenet_v1_coco_2018_01_28/ssd_mobilenet_OLI.xml -d MYRIAD
I get the following error
InferenceEngine:
API version ............ 1.4
Build .................. 19154
[ INFO ] Parsing input parameters
[ INFO ] Reading input(object_detection_demo_ssd_async:18959): GStreamer-CRITICAL **: 00:59:01.431: gst_element_get_state: assertion 'GST_IS_ELEMENT (element)' failed
[ INFO ] Loading pluginAPI version ............ 1.5
Build .................. 19154
Description ....... myriadPlugin
[ INFO ] Loading network files
[ ERROR ] Error reading network: input must have dimensions
any idea how to fix this ?
I got the same situation as you.
I have no idea what's going on. If you get some any progress, please share it with me.
Thanks.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
> GStreamer-CRITICAL **: 00:59:01.431: gst_element_get_state: assertion 'GST_IS_ELEMENT (element)' failed
This is a video capture opencv / gstreamer issue.
What is the output of v4l2-ctl --list-devices ?
Is openvc openvino environment configured properly? What is your OS?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I SOLVED with 2 changes:
the solution is
- to add as parameter in mo_tf.py the following
--output="detection_boxes,detection_scores,num_detections"
In this way the inference will work
- doing inference with ./object_detection_demo_ssd_async if input is a camera use "-i cam" and if it is a video use for instance "-i ~/Scaricati/videoplayback.mp4"
@nikos I was refering to the camera with the wrong command, just using "-i cam" it is working.
I have UBUNTU 18.04
many thanks for your question that drove me in the right direction.
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page