- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
What does this message mean? This portion of the model doesn't even have a Concat layer. Should I be concerned? Prototxt below is a modified version of beginning layers of a tiny_yolo model. The compiler message refers to the final, "conv15/1x1" layer.
name: "tiny_ncsdk_dts"
input: "data"
input_shape {
dim:1
dim:1
dim:224
dim:224 }
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 32
kernel_size: 3
pad: 1
stride: 2
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "conv1"
top: "bn1"
}
layer {
name: "relu1"
type: "ReLU"
bottom: "bn1"
top: "relu1"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv2"
type: "Convolution"
bottom: "relu1"
top: "conv2"
convolution_param {
num_output: 32
kernel_size: 3
pad: 1
stride: 2
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "bn2"
}
layer {
name: "relu2"
type: "ReLU"
bottom: "bn2"
top: "relu2"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv3"
type: "Convolution"
bottom: "relu2"
top: "conv3"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "bn3"
}
layer {
name: "relu3"
type: "ReLU"
bottom: "bn3"
top: "relu3"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv5"
type: "Convolution"
bottom: "relu3"
top: "conv5"
convolution_param {
num_output: 64
kernel_size: 3
pad: 1
stride: 2
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn5"
type: "BatchNorm"
bottom: "conv5"
top: "bn5"
}
layer {
name: "relu5"
type: "ReLU"
bottom: "bn5"
top: "relu5"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv6"
type: "Convolution"
bottom: "relu5"
top: "conv6"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn6"
type: "BatchNorm"
bottom: "conv6"
top: "bn6"
}
layer {
name: "relu6"
type: "ReLU"
bottom: "bn6"
top: "relu6"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv8"
type: "Convolution"
bottom: "bn6"
top: "conv8"
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn8"
type: "BatchNorm"
bottom: "conv8"
top: "bn8"
}
layer {
name: "relu8"
type: "ReLU"
bottom: "bn8"
top: "relu8"
relu_param{
negative_slope: 0.1
}
}
layer {
name: "pool8"
type: "Pooling"
bottom: "relu8"
top: "pool8"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer{
name: "conv9"
type: "Convolution"
bottom: "pool8"
top: "conv9"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn9"
type: "BatchNorm"
bottom: "conv9"
top: "bn9"
}
layer {
name: "relu9"
type: "ReLU"
bottom: "bn9"
top: "relu9"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv11"
type: "Convolution"
bottom: "relu9"
top: "conv11"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
param {
name: "conv11_w"
}
}
layer {
name: "relu11"
type: "ReLU"
bottom: "conv11"
top: "relu11"
relu_param{
negative_slope: 0.1
}
}
layer{
name: "conv11_2"
type: "Convolution"
bottom: "relu11"
top: "conv11_2"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
stride: 1
bias_term: false
weight_filler {
type: "xavier"
}
}
param {
name: "conv11_w"
}
}
layer {
name: "bn11_2"
type: "BatchNorm"
bottom: "conv11_2"
top: "bn11_2"
}
layer {
name: "relu11_2"
type: "ReLU"
bottom: "bn11_2"
top: "relu11_2"
relu_param{
negative_slope: 0.1
}
}
#####
layer {
name: "conv14/3x3"
type: "Convolution"
bottom: "relu11_2"
top: "conv14/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 256
weight_filler {
type: "msra"
}
bias_term: false
engine: CAFFE
}
}
layer {
name: "conv14/3x3/bn"
type: "BatchNorm"
bottom: "conv14/3x3"
top: "conv14/3x3/bn"
}
layer {
name: "conv14/3x3/scale"
type: "Scale"
bottom: "conv14/3x3/bn"
top: "conv14/3x3/scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu1"
type: "ReLU"
bottom: "conv14/3x3/scale"
top: "conv14/relu1"
relu_param{
negative_slope: 0.1
}
}
layer {
name: "conv14/1x1"
type: "Convolution"
bottom: "conv14/relu1"
top: "conv14/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
layer {
name: "conv14/1x1/bn"
type: "BatchNorm"
bottom: "conv14/1x1"
top: "conv14/1x1/bn"
}
layer {
name: "conv14/1x1/scale"
type: "Scale"
bottom: "conv14/1x1/bn"
top: "conv14/1x1/scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv14/relu2"
type: "ReLU"
bottom: "conv14/1x1/scale"
top: "conv14/1x1/relu"
relu_param{
negative_slope: 0.1
}
}
#####
# Had typo below, in which layer name had cap X: "conv15/3X3"
layer {
name: "conv15/3x3"
type: "Convolution"
bottom: "conv14/1x1/relu"
top: "conv15/3x3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
stride: 1
group: 512
#dilation: 2
weight_filler {
type: "msra"
}
bias_term: false
engine: CAFFE
}
}
layer {
name: "conv15/3x3/bn"
type: "BatchNorm"
bottom: "conv15/3x3"
top: "conv15/3x3/bn"
}
layer {
name: "conv15/3x3/scale"
type: "Scale"
bottom: "conv15/3x3/bn"
top: "conv15/3x3/scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv15/relu1"
type: "ReLU"
bottom: "conv15/3x3/scale"
top: "conv15/relu1"
relu_param{
negative_slope: 0.1
}
}
layer {
name: "conv15/1x1"
type: "Convolution"
bottom: "conv15/relu1"
top: "conv15/1x1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "msra"
}
bias_term: false
}
}
root@synapse:~/Code/DeepTextSpotter/models# mvNCCompile -s 12 -o temp.graph junk.prototxt
mvNCCompile v02.00, Copyright @ Intel Corporation 2017
****** WARNING: using empty weights ******
Layer conv15/1x1 forced to im2col_v2, because its output is used in concat
/usr/local/bin/ncsdk/Controllers/FileIO.py:65: UserWarning: You are using a large type. Consider reducing your data sizes for best performance
Blob generated
Link Copied
0 Replies
Reply
Topic Options
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page