- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Here is the model that was used:
def make_model(X, y, unit_nums):
"""
Makes a 4-hidden-layer DNN with the number of hidden units as given in
unit_nums.
Uses ReLU activations and Xavier initialization.
Outputs a single scalar with sigmoid activation.
Returns the output tensor, the cost, and the accuracy.
"""
assert len(unit_nums) == 4
seed = 20180908
dense_1 = tf.layers.dense(X, unit_nums[0], activation=tf.nn.relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(seed=seed)
)
dense_2 = tf.layers.dense(dense_1, unit_nums[1], activation=tf.nn.relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(seed=seed)
)
dense_3 = tf.layers.dense(dense_2, unit_nums[2], activation=tf.nn.relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(seed=seed)
)
dense_4 = tf.layers.dense(dense_3, unit_nums[3], activation=tf.nn.relu,
kernel_initializer=tf.contrib.layers.xavier_initializer(seed=seed)
)
logits = tf.layers.dense(dense_4, 1, activation=None,
kernel_initializer=tf.contrib.layers.xavier_initializer(seed=seed)
)
cost = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits)
cost = tf.reduce_mean(cost)
output = tf.sigmoid(logits, name="dnn_output")
correct = tf.equal(tf.round(output), y)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
return output, cost, accuracy
Here is the training:
sess = tf.Session()
X_place = tf.placeholder(tf.float64, shape=(None, 1802), name="dnn_input")
y_place = tf.placeholder(tf.float64, shape=(None, 1))
unit_nums = [1802, 901, 450, 225]
pred, cost, acc = make_model(X_place, y_place, unit_nums)
opt = tf.train.AdagradOptimizer(learning_rate=0.1).minimize(cost)
init = tf.global_variables_initializer()
sess.run(init)
model_name = args.model if "/" in args.model or not args.model else "./" + args.model
saver = tf.train.Saver(tf.global_variables())
Thanks for your time!
Link Copied

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page