- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
mvNCcheck fails when I was trying to check mobilenet ssd. Is there anyone run mobilenet ssd succcessfully with the latest 1.11 NCSDK release?
the command I used: "mvNCCheck MobileNetSSD_deploy.prototxt -w MobileNetSSD_deploy.caffemodel -s 12 -is 300 300 -i /opt/movidius/ncappzoo/data/images/512_Monitor.jpg"
the caffemodel and prototxt are from https://github.com/chuanqi305/MobileNet-SSD.
the error message is as follows:
mvNCCheck v02.00, Copyright @ Movidius Ltd 2016
/usr/local/lib/python3.5/dist-packages/scipy/lib/decorator.py:219: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
first = inspect.getargspec(caller)[0][0] # first arg
/usr/local/lib/python3.5/dist-packages/scipy/optimize/nonlin.py:1498: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
args, varargs, varkw, defaults = inspect.getargspec(jac.init)
/usr/local/lib/python3.5/dist-packages/scipy/stats/_distn_infrastructure.py:611: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
sign = inspect.getargspec(self._stats)
/usr/local/lib/python3.5/dist-packages/scipy/stats/_distn_infrastructure.py:648: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
shapes_args = inspect.getargspec(meth)
/usr/local/bin/ncsdk/Controllers/FileIO.py:52: UserWarning: You are using a large type. Consider reducing your data sizes for best performance
"Consider reducing your data sizes for best performance\033[0m")
USB: Transferring Data…
USB: Myriad Execution Finished
USB: Myriad Connection Closing.
USB: Myriad Connection Closed.
Result: (1, 25, 7)
1) 44 nan
2) 9 nan
3) 23 nan
4) 30 nan
5) 149 nan
Expected: (1, 1, 7)
1) 1 20.0
2) 2 0.99951
3) 5 0.99219
4) 6 0.9126
5) 3 0.059631
/usr/local/bin/ncsdk/Controllers/Metrics.py:75: RuntimeWarning: invalid value encountered in greater
diff)) / total_values * 100
Obtained values
Obtained Min Pixel Accuracy: nan% (max allowed=2%), Fail
Obtained Average Pixel Accuracy: nan% (max allowed=1%), Fail
Obtained Percentage of wrong values: 1700.0% (max allowed=0%), Fail
Obtained Pixel-wise L2 error: nan% (max allowed=1%), Fail
Obtained Global Sum Difference: nan
- Tags:
- Caffe
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I tried to run inference with the compiled graph file and get result of length 707, some values are inf or nan.
The following is the script I ran:
dim=(300, 300)
mvnc.SetGlobalOption(mvnc.GlobalOption.LOG_LEVEL, 2)
devices = mvnc.EnumerateDevices()
device = mvnc.Device(devices[0])
device.OpenDevice()
network_blob="/home/intel/workspace/ncappzoo/caffe/MobileNetSSD/graph"
with open(network_blob, mode="rb") as f:
blob = f.read()
graph = device.AllocateGraph(blob)
img = cv2.imread("/home/intel/workspace/ncappzoo/data/images/cat.jpg")
img = cv2.resize(img, dim)
img = np.subtract(img, 127.5)
img = np.multiply(img, 0.007843)
graph.LoadTensor(img.astype(np.float16), 'user object')
output, userobj = graph.GetResult()
print (len(output))
print (output)
graph.DeallocateGraph()
device.CloseDevice()
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
some of the results as follows:
2.50000000e+01 8.13125000e+01 5.33203125e+00 4.25312500e+01
8.11219215e-05 8.03125000e+01 8.53125000e+01 0.00000000e+00
1.00000000e+00 nan -inf -5.27187500e+01
inf -5.27187500e+01 0.00000000e+00 2.00000000e+00
nan -inf -5.27187500e+01 inf
-5.27187500e+01 0.00000000e+00 3.00000000e+00 nan
-inf -5.27187500e+01 inf -5.27187500e+01
0.00000000e+00 4.00000000e+00 nan -inf
-5.27187500e+01 inf -5.27187500e+01 0.00000000e+00
5.00000000e+00 nan -inf -5.27187500e+01
inf -5.27187500e+01 0.00000000e+00 6.00000000e+00
nan -inf -5.27187500e+01 inf
-5.27187500e+01 0.00000000e+00 7.00000000e+00 nan
-inf -5.27187500e+01 inf -5.27187500e+01
0.00000000e+00 8.00000000e+00 nan -inf
-5.27187500e+01 inf -5.27187500e+01 0.00000000e+00
8.00000000e+00 1.00000000e+00 5.37109375e-03 -2.92968750e-03
9.48242188e-01 9.67285156e-01 0.00000000e+00 9.00000000e+00
nan -inf -5.27187500e+01 inf
-5.27187500e+01 0.00000000e+00 1.00000000e+01 nan
-inf -5.27187500e+01 inf -5.27187500e+01
0.00000000e+00 1.10000000e+01 nan -inf
-5.27187500e+01 inf -5.27187500e+01 0.00000000e+00
1.20000000e+01 nan -inf -5.27187500e+01
inf -5.27187500e+01 0.00000000e+00 1.30000000e+01
nan -inf -5.27187500e+01 inf
-5.27187500e+01 0.00000000e+00 1.40000000e+01 nan
-inf -5.27187500e+01 inf -5.27187500e+01
0.00000000e+00 1.50000000e+01 nan -inf
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I face the same problem. Have you solved it?@xhuan28
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page