Intel® oneAPI DPC++/C++ Compiler
Talk to fellow users of Intel® oneAPI DPC++/C++ Compiler and companion tools like Intel® oneAPI DPC++ Library, Intel® DPC++ Compatibility Tool, and Intel® Distribution for GDB*
694 Discussions

Compiled program Works on CPU but not in GPU/FPGA and cannot trigger FPGA

Alechiove
Beginner
5,702 Views

Hi, i have this program that i wrote for performing PageRank.

It compiles and runs in CPU, but i cannot run it on GPU because of this error:

 

terminate called after throwing an instance of 'sycl::_V1::compile_program_error'
  what():  The program was built for 1 devices
Build program log for 'Intel(R) UHD Graphics [0x9a60]':

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.
 -11 (PI_ERROR_BUILD_PROGRAM_FAILURE)
Aborted

 

I think this is going to be a potential error also when i will run it on FPGA which, by the way, i cannot trigger.

The command i've run was this one

qsub -I -l nodes=1:fpga_compile:ppn=2 -d .

then the compiled file, but the device triggered was the CPU again.

 

Here's the main code:

 

#include <sycl/sycl.hpp>
#include <sycl/ext/intel/fpga_extensions.hpp>
// #include <oneapi/mkl/blas.hpp>
#include <cmath>
#include <chrono>
#include <iostream>
#include <vector>
#include <cmath>
#include "guideline.h"
#include "print_vector.h"
#include "print_time.h"
#include "read_graph.h"
#include "flatVector.h"


using namespace sycl;

int main(int argc, char* argv[]){
    // Check Command Line
    if(argc < 6){
        // NOT ENOUGH PARAMS BY COMMAND LINE -> PROGRAM HALTS
        guideline();
    }
    else{
        // Command Line parsing
        int device_selected = atoi(argv[1]);
        std::string csv_path = argv[2];
        float threshold = atof(argv[3]);
        float damping = atof(argv[4]);
        int verbose;
        try{verbose = atoi(argv[5]);}
        catch (exception const& e) {verbose = 0;}
        device d;
        // Selezioniamo la piattaforma di accelerazione
        if(device_selected == 1){
            d = device(cpu_selector_v()); //# cpu_selector returns a cpu device
        }
        if(device_selected == 2){
            try {
                d = device(gpu_selector_v());      //# gpu_selector returns a gpu device
            } catch (exception const& e) {
                std::cout << "Cannot select a GPU\n" << e.what() << "\n";
                std::cout << "Using a CPU device\n";
                d = device(cpu_selector_v());      //# cpu_selector returns a cpu device
            }
        }
        if(device_selected == 3){
            ext::intel::fpga_selector d;
        }
        // Queue
        queue q(d);
        std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; // print del device
        // Reading and setup Time Calculation
        auto start_setup = std::chrono::steady_clock::now();
        // Graph Retrieval by csv file
        std::vector<std::vector<int>> graph = Read_graph(csv_path);/*Sparse Matrix Representation with the description of each Edge of the Graph*/
        std::vector<int> flatGraph = flatten<int>(graph);
        // Calculation of the # Nodes
        int numNodes  = countNodes(graph);
        // Calculation of the Degree of each node
        std::vector<int> degreesNodes = getDegrees(graph, numNodes+1);
        auto end_setup = std::chrono::steady_clock::now();
        // Setup Execution Time print
        std::cout << "TIME FOR SETUP" << "\n";
        print_time(start_setup, end_setup);
        // Check Print
        //printVector<int>(degreesNodes);
        //Creation of Initial and Final Ranks' vectors of PageRank [R(t); R(t+1)]
        std::vector<float> ranks_t(numNodes, (float)(1.0/ (float)(numNodes)));
        std::vector<float> ranks_t_plus_one(numNodes, 0.0);

        // PageRank Execution Time calculation
        auto start = std::chrono::steady_clock::now();
        buffer<int> bufferEdges(flatGraph.data(),flatGraph.size());
        buffer<float> bufferRanks(ranks_t.data(),ranks_t.size());
        buffer<int> bufferDegrees(degreesNodes.data(),degreesNodes.size());
        buffer<float> bufferRanksNext(ranks_t_plus_one.data(),ranks_t_plus_one.size());
        float distance = threshold + 1;
        int graph_size = flatGraph.size();
        while (distance > threshold) {
            q.submit([&](handler &h){
                accessor Edges(bufferEdges,h,read_only);
                accessor Ranks(bufferRanks,h,read_only);
                accessor Degrees(bufferDegrees,h,read_only);
                accessor RanksNext(bufferRanksNext,h,write_only);
                h.parallel_for(range<1>(numNodes),[=] (id<1> i){
                    RanksNext[i] = (1.0 - damping) / numNodes;
                    int index_node_i;
                    int index_node_j;
                    for (int j = 0; j<graph_size;j++) {
                        index_node_i = 2 * j;
                        index_node_j = index_node_i + 1;
                        if (Edges[index_node_j] == i) {
                            RanksNext[i] += damping * Ranks[Edges[index_node_i]] / Degrees[Edges[index_node_i]];
                        }
                    }
                });
            });
            distance = 0;
            for (int i = 0; i < numNodes; i++) {
                distance += (ranks_t[i] - ranks_t_plus_one[i]) * (ranks_t[i] - ranks_t_plus_one[i]);
            }
            distance = sqrt(distance);
            ranks_t_plus_one = ranks_t;
        }
        auto end = std::chrono::steady_clock::now();
        // PageRank Results Printing
        if(verbose == 1){printVector(ranks_t_plus_one);}
        std::cout<<std::endl<<std::endl<<std::endl;
        std::cout<<"Final Norm:\t"<<distance<<std::endl;
        // PageRank Execution Time Printing
        std::cout << "TIME FOR PAGERANK" << "\n";
        print_time(start, end);

    }
    return 0;
}

 

 

Can anyone help me?  Thank you in advance!

0 Kudos
15 Replies
Alechiove
Beginner
5,638 Views

little edit of the code since i saw some conceptual errors on how i wrote the pagerank algorithm:

 

q.submit([&](handler &h){
                accessor Edges(bufferEdges,h,read_only);
                accessor Ranks(bufferRanks,h,read_only);
                accessor Degrees(bufferDegrees,h,read_only);
                accessor RanksNext(bufferRanksNext,h,write_only);
                h.parallel_for(range<1>(numNodes),[=] (id<1> i){
                    RanksNext[i] = (1.0 - damping) / numNodes;
                    int index_node_i;
                    int index_node_j;
                    for (int j = 0; j<graph_size;j+=2) {
                        index_node_i = j;
                        index_node_j = j + 1;
                        if (Edges[index_node_j] == i) {
                            RanksNext[i] += damping * Ranks[Edges[index_node_i]] / Degrees[Edges[index_node_i]];
                        }
                    }
                });
            }).wait();

Also, from watching other resources online i found out a way to see the available machines of 1api with this commands

pbsnodes | grep -B4 gpu

Which is useful to search for gen9 GPUs, which can accept double. Then, i submit the job with the following command:

qsub -I -l nodes=<node_with_gen9_GPU>:ppn=2 -d .

 

It Works, but the programs throws this exception after the normal prints which i wanted to have

Device : Intel(R) UHD Graphics P630 [0x3e96]
TIME FOR SETUP
Elapsed time in nanoseconds: 9672748170 ns
Elapsed time in microseconds: 9672748 µs
Elapsed time in milliseconds: 9672 ms
Elapsed time in seconds: 9 sec
terminate called after throwing an instance of 'sycl::_V1::runtime_error'
  what():  Native API failed. Native API returns: -1 (PI_ERROR_DEVICE_NOT_FOUND) -1 (PI_ERROR_DEVICE_NOT_FOUND)
Aborted

 

How can i solve these issues? Could they be a problem also by Transporting this program to an FPGA?

Thank you in advance!

 

0 Kudos
SeshaP_Intel
Moderator
5,621 Views

Hi,


Thank you for posting in Intel Communities.


Have you tried calculating RanksNext operation using int datatype inside parallel_for? 

We have compiled your source code and did not face any issues. Could you please provide the print_vector.h and run time arguments you were passing?


Thanks and Regards,

Pendyala Sesha Srinivas


0 Kudos
Alechiove
Beginner
5,596 Views
Hi!
Here’s the print_vector.h

include <iostream>
#include <vector>

template <typename T>
void printVector(std::vector<T> vector_like_var){
for(int i = 0; i < vector_like_var.size(); i++){
std::cout<< "element " <<i+1 << "of vector:\t" << vector_like_var[i] <<std::endl;
}
}

And here’s the command line argument I passed
./<executable_name> 2 <csv_path> 3e-5 0.85 0

I can’t pass the csv because they are quite heavy. But every csv containing a list of pairs of nodes should be fine.
0 Kudos
SeshaP_Intel
Moderator
5,529 Views

Hi,

 

Could you please try the whole calculation in the kernel using int datatype and let us know the results?

I am able to run the executable with a sample csv file on GPU and FPGA after changing the source file. Please find the below screenshot for more details.

SeshaP_Intel_0-1676372096988.png

If this does not resolve your issue, could you please send the sample CSV file so that it will be greatly helpful while investigating this case?

 

Thanks and Regards,

Pendyala Sesha Srinivas

0 Kudos
Alechiove
Beginner
5,508 Views

Hi! thanks for the reply. Unfortunatly, the task of the algorithm is in a domain of problem where i'm constrained to use non-int datatypes.

I managed to shrink a little the dataset. It's just a collection of edges of a graph described by pairs of nodes separated by a ","

Anyway, just to make a try, i compiled using the int datatypes, and i still got the same results

Just to report the logs of the errors when loading to GPUs:

<myUser>@s019-n010:~/HPCA_FINAL_PROJECT$ qsub -I -l nodes=s001-n234:ppn=2 -d .
qsub: waiting for job 2194177.v-qsvr-1.aidevcloud to start
qsub: job 2194177.v-qsvr-1.aidevcloud ready


########################################################################
#      Date:           Tue 14 Feb 2023 02:21:49 PM PST
#    Job ID:           2194177.v-qsvr-1.aidevcloud
#      User:           <myUser>
# Resources:           cput=75:00:00,neednodes=s001-n234:ppn=2,nodes=s001-n234:ppn=2,walltime=06:00:00
########################################################################

<myUser>@s001-n234:~/HPCA_FINAL_PROJECT$ ./BUFFER_PageRank 2 "datasets/cit-Patents.csv" 3e-05 0.85 0
Device : Intel(R) UHD Graphics P630 [0x3e96]
TIME FOR SETUP
Elapsed time in nanoseconds: 9587884043 ns
Elapsed time in microseconds: 9587884 µs
Elapsed time in milliseconds: 9587 ms
Elapsed time in seconds: 9 sec
terminate called after throwing an instance of 'sycl::_V1::runtime_error'
  what():  Native API failed. Native API returns: -1 (PI_ERROR_DEVICE_NOT_FOUND) -1 (PI_ERROR_DEVICE_NOT_FOUND)
Aborted

the one above was done after i chose the node having 9 gen GPUs, selected by searching the first one available printed out by the command pbsnodes | grep -B4 gpu

The one under is the one i have by using the classic qsub -I -l nodes=1:gpu:ppn2 -d .

<myUser>@s019-n010:~/HPCA_FINAL_PROJECT$ ./BUFFER_PageRank 2 "datasets/cit-Patents.csv" 3e-05 0.85 0
Device : Intel(R) UHD Graphics [0x9a60]
TIME FOR SETUP
Elapsed time in nanoseconds: 6535755467 ns
Elapsed time in microseconds: 6535755 µs
Elapsed time in milliseconds: 6535 ms
Elapsed time in seconds: 6 sec
terminate called after throwing an instance of 'sycl::_V1::compile_program_error'
  what():  The program was built for 1 devices
Build program log for 'Intel(R) UHD Graphics [0x9a60]':

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for sycl::_V1::detail::RoundedRangeKernel<sycl::_V1::item<1, true>, 1, main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)>'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.

error: Double type is not supported on this platform.
in kernel: 'typeinfo name for main::'lambda'(sycl::_V1::handler&)::operator()(sycl::_V1::handler&) const::'lambda'(sycl::_V1::id<1>)'
error: backend compiler failed build.
 -11 (PI_ERROR_BUILD_PROGRAM_FAILURE)
Aborted
0 Kudos
SeshaP_Intel
Moderator
5,477 Views

Hi,

 

Please find the below-modified source file which was compiled and executed without any errors on CPU, GPU, and FPGA.

 

#include <sycl/sycl.hpp>
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <cmath>
#include <chrono>
#include <iostream>
#include <vector>
#include <cmath>
#include "guideline.h"
#include "print_vector.h"
#include "print_time.h"
#include "read_graph.h"
#include "flatVector.h"

using namespace sycl;
using namespace std;
int main(int argc, char* argv[])
{
    // Check Command Line
    if(argc < 6)
    {
        // NOT ENOUGH PARAMS BY COMMAND LINE -> PROGRAM HALTS
        guideline();
    }
    else{
        // Command Line parsing
        int device_selected = atoi(argv[1]);
        std::string csv_path = argv[2];
        float threshold = atof(argv[3]);
        float damping = atof(argv[4]);
        int verbose;
        try{verbose = atoi(argv[5]);}
        catch (std::exception const& e) {verbose = 0;}
        device d;
        // Selezioniamo la piattaforma di accelerazione
        if(device_selected == 1)
        {
            d = device(cpu_selector_v); //# cpu_selector returns a cpu device
        }
        if(device_selected == 2)
        {
            try 
            {
                d = device(gpu_selector_v);      //# gpu_selector returns a gpu device
            } catch (std::exception const& e) 
            {
                std::cout << "Cannot select a GPU\n" << e.what() << "\n";
                std::cout << "Using a CPU device\n";
                d = device(cpu_selector_v);      //# cpu_selector returns a cpu device
            }
        }
        if(device_selected == 3)
        {
            d = device(ext::intel::fpga_emulator_selector());
        }
        queue q(d);
        std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; // print del device
        // Reading and setup Time Calculation
        auto start_setup = std::chrono::steady_clock::now();
        // Graph Retrieval by csv file
        std::vector<std::vector<int>> graph = Read_graph(csv_path);/*Sparse Matrix Representation with the description of each Edge of the Graph*/
        std::vector<int> flatGraph = flatten<int>(graph);
        // Calculation of the # Nodes
        int numNodes  = countNodes(graph);
        // Calculation of the Degree of each node
        std::vector<int> degreesNodes = getDegrees(graph, numNodes+1);
        auto end_setup = std::chrono::steady_clock::now();
        // Setup Execution Time print
        std::cout << "TIME FOR SETUP" << "\n";
        print_time(start_setup, end_setup);
        // Check Print
        //printVector<int>(degreesNodes);
        //Creation of Initial and Final Ranks' vectors of PageRank [R(t); R(t+1)]
        std::vector<float> ranks_t(numNodes, (float)(1.0/ (float)(numNodes)));
        std::vector<float> ranks_t_plus_one(numNodes, 0.0);
        std::vector<float> ranksDifferences(numNodes, 0.0);

        // PageRank Execution Time calculation
        auto start = std::chrono::steady_clock::now();
        buffer<int> bufferEdges(flatGraph.data(),flatGraph.size());
        buffer<float> bufferRanks(ranks_t.data(),ranks_t.size());
        buffer<int> bufferDegrees(degreesNodes.data(),degreesNodes.size());
        buffer<float> bufferRanksNext(ranks_t_plus_one.data(),ranks_t_plus_one.size());
        buffer<float> bufferRanksDifferences(ranksDifferences.data(),ranksDifferences.size());
        float distance = threshold + 1;
        int graph_size = flatGraph.size();
        std::cout<<"graph_size = "<<graph_size<<"\n";
        std::cout<<"damping = "<<damping<<"\n";
        std::cout<<"numNodes = "<<numNodes<<"\n";
        
            
        int T = 1;
        while (distance > threshold) {
            q.submit([&](handler &h){
                accessor Edges(bufferEdges,h,read_only);
                accessor Ranks(bufferRanks,h,read_only);
                accessor Degrees(bufferDegrees,h,read_only);
                accessor RanksNext(bufferRanksNext,h,read_write);
                accessor RanksDifferences(bufferRanksDifferences,h,read_write);
                auto out = stream(1024, 256, h);
                h.parallel_for(range(numNodes), [=](auto i)
                               { 
                    
                    RanksNext[i] = (1 - damping) / numNodes;
                    int index_node_i;
                    int index_node_j;
                    for (int j = 0; j<graph_size;j+=2) 
                    {
                        index_node_i = j;
                        index_node_j = j + 1;
                        if (Edges[index_node_j] == i) 
                        {
                            RanksNext[i] = RanksNext[i] + damping * Ranks[Edges[index_node_i]] / Degrees[Edges[index_node_i]];
                        }
                    }
                    RanksDifferences[i] = (RanksNext[i] - Ranks[i]) * (RanksNext[i] - Ranks[i]);
                });
            }).wait();
            
                distance = 0.0;
            for (int i = 0; i < numNodes; i++) 
            {
                distance = distance + ranksDifferences[i];
                ranks_t[i] = ranks_t_plus_one[i];
                ranks_t_plus_one[i] = 0.0;
            }
            
            distance = sqrt(distance);
            
            std::cout<< "Time:\t" << T << "\tEuclidian Distance:\t" << distance << std::endl;
            T=T+1;
        }
        auto end = std::chrono::steady_clock::now();
        // PageRank Results Printing
        if(verbose == 1){
            for(int i = 0;i<ranks_t.size();i++){
                std::cout<<"Final Vector" << i<< "-th component:\t"<<ranks_t[i]<<std::endl;
            }
        }
        std::cout<<std::endl<<std::endl<<std::endl;
        std::cout<<"Final Norm:\t"<<distance<<std::endl;
        // PageRank Execution Time Printing
        std::cout << "TIME FOR PAGERANK" << "\n";
        print_time(start, end);

    }
    return 0;
}

 

Hope this resolves your issue. 

 

Thanks and Regards,

Pendyala Sesha Srinivas

 

0 Kudos
Alechiove
Beginner
5,459 Views

Hi, Thanks for the reply.

 

I just tried it on a GPU and i still got the same errors as above

terminate called after throwing an instance of 'sycl::_V1::runtime_error'
  what():  Native API failed. Native API returns: -1 (PI_ERROR_DEVICE_NOT_FOUND) -1 (PI_ERROR_DEVICE_NOT_FOUND)
Aborted

i think that maybe then i am doing something wrong during compilation time.

Could you pass me the lines you wrote on the terminal to see if i'm doing the things correctly?

 

I'm doing like this

if i'm working from terminal:

ssh devcloud

Else, if i'm working with jupyter notebook of devcloud

 

qsub -I

cd <FolderProject>

icpx -fsycl main.cpp -o BUFFER_PageRank

*FOR CPU*

./BUFFER_PageRank 1 "<datasetPath>" 3e-05 0.85 0

*FOR GPU*

qsub -I -l nodes=1:gpu:ppn=2 -d .

./BUFFER_PageRank 2 "<datasetPath>" 3e-05 0.85 0

*FOR FPGA*

qsub -I -l nodes=1:fpga_compile:ppn=2 -d .

./BUFFER_PageRank 3 "<datasetPath>" 3e-05 0.85 0

 

So, just to clarify, i'm compiling once on the CPU job. Then, i'm using the same executable also for GPU and FPGA.

Am i doing this wrong?

 

0 Kudos
SeshaP_Intel
Moderator
5,416 Views

Hi,

 

After connecting to the devcloud, you can access a node that has an Intel CPU device.

For compiling the source file you can use the below command.

icpx -fsycl main.cpp

 

For accessing an Intel GPU device in a node and compiling the source file you can use the below commands.  

qsub -I -l nodes=1:gpu:ppn=2 -d .
icpx -fsycl main.cpp

 

For accessing an Intel FPGA device in a node and compiling the source file you can use the below commands.

qsub -I -l nodes=1:fpga:ppn=2 -d .
icpx -fsycl -fintelfpga main.cpp

 

The generated executables will be different after compiling on GPU and FPGA devices.

Hope this resolves your issue.

 

Thanks and Regards,

Pendyala Sesha Srinivas

 

0 Kudos
SeshaP_Intel
Moderator
5,371 Views

Hi,


Has the information provided above helped? If yes, could you please confirm whether we can close this thread from our end?


Thanks and Regards,

Pendyala Sesha Srinivas


0 Kudos
Alechiove
Beginner
5,344 Views

Hi!

Actually no, i already tried all of the combos of the commands you gave me on the devcloud and i couldn't run on GPU or FPGA neither.

Anyway, i found out a way to run locally some experiments with other GPUs and it seems to work, even if the results differ from the ones i obtained with the CPUs (i will open a thread about it and close this one).

I think the problem in my case is that some of the drivers, environment or Configs of the GPUs/OneAPI that i have adopted locally differ from the ones that you adopt on the devcloud.

Is there a way to check envs/gpu specs?

Thanks!

0 Kudos
SeshaP_Intel
Moderator
5,267 Views

Hi,

 

Please find the modified source file below which I was able to compile and execute without any errors on CPU, GPU, and FPGA.

 

 

#include <sycl/sycl.hpp>
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <cmath>
#include <chrono>
#include <iostream>
#include <vector>
#include <cmath>
#include "guideline.h"
#include "print_vector.h"
#include "print_time.h"
#include "read_graph.h"
#include "flatVector.h"

using namespace sycl;
using namespace std;

int main(int argc, char* argv[])
{
    // Check Command Line
    if(argc < 6)
    {
        // NOT ENOUGH PARAMS BY COMMAND LINE -> PROGRAM HALTS
        guideline();
    }
    
    else
    {
        // Command Line parsing
        int device_selected = atoi(argv[1]);
        std::string csv_path = argv[2];
        float threshold = atof(argv[3]);
        float damping = atof(argv[4]);
        int verbose;
        try{verbose = atoi(argv[5]);}
        catch (std::exception const& e) {verbose = 0;}
        device d;
        // Selezioniamo la piattaforma di accelerazione
        if(device_selected == 1)
        {
            d = device(cpu_selector_v); //# cpu_selector returns a cpu device
        }
        if(device_selected == 2){
            try 
            {
                d = device(gpu_selector_v);      //# gpu_selector returns a gpu device
            } catch (std::exception const& e) {
                std::cout << "Cannot select a GPU\n" << e.what() << "\n";
                std::cout << "Using a CPU device\n";
                d = device(cpu_selector_v);      //# cpu_selector returns a cpu device
            }
        }
        if(device_selected == 3){
            d = device(ext::intel::fpga_emulator_selector());
        }
        queue q(d);
        std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; // print del device
        // Reading and setup Time Calculation
        auto start_setup = std::chrono::steady_clock::now();
        // Graph Retrieval by csv file
        std::vector<std::vector<int>> graph = Read_graph(csv_path);/*Sparse Matrix Representation with the description of each Edge of the Graph*/
        //std::vector<int> flatGraph = flatten<int>(graph,numNodes);
        // Calculation of the # Nodes
        int numNodes  = countNodes(graph);
        
        std::vector<int> flatGraph = flatten<int>(graph);
        // Calculation of the Degree of each node
        std::vector<int> degreesNodes = getDegrees(graph, numNodes+1);
        auto end_setup = std::chrono::steady_clock::now();
        // Setup Execution Time print
        std::cout << "TIME FOR SETUP" << "\n";
        print_time(start_setup, end_setup);
        // Check Print
        //printVector<int>(degreesNodes);
        //Creation of Initial and Final Ranks' vectors of PageRank [R(t); R(t+1)]
        std::vector<float> ranks_t(numNodes, (float)(1.0f/ (float)(numNodes)));
        std::vector<float> ranks_t_plus_one(numNodes, 0.0);
        std::vector<float> ranksDifferences(numNodes, 0.0);

        // PageRank Execution Time calculation
        auto start = std::chrono::steady_clock::now();
        buffer<int> bufferEdges(flatGraph.data(),flatGraph.size());
        buffer<float> bufferRanks(ranks_t.data(),ranks_t.size());
        buffer<int> bufferDegrees(degreesNodes.data(),degreesNodes.size());
        buffer<float> bufferRanksNext(ranks_t_plus_one.data(),ranks_t_plus_one.size());
        buffer<float> bufferRanksDifferences(ranksDifferences.data(),ranksDifferences.size());
        float distance = threshold + 1;
        int graph_size = flatGraph.size();
        std::cout<<"graph_size = "<<graph_size<<"\n";
        std::cout<<"damping = "<<damping<<"\n";
        std::cout<<"numNodes = "<<numNodes<<"\n";

        int T = 1;
        
        bufferRanksDifferences.get_access<access::mode::write>()[range(numNodes)] = 0.0f;

        while (distance > threshold) {
            q.submit([&](handler &h){
                accessor Edges(bufferEdges,h,read_only);
                accessor Ranks(bufferRanks,h,read_only);
                accessor Degrees(bufferDegrees,h,read_write);
                accessor RanksNext(bufferRanksNext,h,read_write);
                accessor RanksDifferences(bufferRanksDifferences,h,read_write);
                auto out = stream(1024, 256, h);
                
                h.parallel_for(range(numNodes), [=](auto i){
                    RanksNext[i] = (1.0f - damping) / numNodes;
                    int index_node_i;
                    int index_node_j;
                    for (int j = 0; j<graph_size;j+=2) 
                    {
                        index_node_i = j;
                        index_node_j = j + 1;
                        if (Edges[index_node_j] == i) 
                        {
                            RanksNext[i] += damping * Ranks[Edges[index_node_i]] / Degrees[Edges[index_node_i]];
                        }
                    }
                    RanksDifferences[i] = (RanksNext[i] - Ranks[i]) * (RanksNext[i] - Ranks[i]);               
                });
                
            }).wait();
            
            distance = 0.0f;
            for (int i=0; i < numNodes; i++) 
            {
                distance += ranksDifferences[i];
                ranks_t[i] = ranks_t_plus_one[i];
                ranks_t_plus_one[i] = 0.0f;
            }
            distance = sqrt(distance);
            std::cout<< "Time:\t" << T << "\tEuclidian Distance:\t" << distance << std::endl;
            T++;
            
        }
        
        auto end = std::chrono::steady_clock::now();
        // PageRank Results Printing
        if(verbose == 1)
        {
            for(int i = 0;i<ranks_t.size();i++)
            {
                std::cout<<"Final Vector" << i<< "-th component:\t"<<ranks_t[i]<<std::endl;
            }
        }
        
        std::cout<<std::endl<<std::endl<<std::endl;
        std::cout<<"Final Norm:\t"<<distance<<std::endl;
        // PageRank Execution Time Printing
        std::cout << "TIME FOR PAGERANK" << "\n";
        print_time(start, end);

    }
    return 0;
}

 

 

Please find the modified dataset and steps followed below.

 

For CPU:

 

 

qsub -I
cd <Path/to/project>
icpx -fsycl main.cpp -o cpu_out.exe
./cpu_out.exe 1 "datasets/cit-Patents.csv" 3e-5 0.85 0

 

 

For GPU:

 

 

qsub -I -l nodes=1:gpu:ppn=2 -d .
cd <Path/to/project>
icpx -fsycl main.cpp -o gpu_out.exe
./gpu_out.exe 2 "datasets/cit-Patents.csv" 3e-5 0.85 0

 

 

For FPGA:

 

 

qsub -I -l nodes=1:fpga:ppn=2 -d .
cd <Path/to/project>
icpx -fsycl -fintelfpga main.cpp -o fpga_out.exe
./fpga_out.exe 3 "datasets/cit-Patents.csv" 3e-5 0.85 0

 

 

 

To view the environment variables, type "export" in the command line to display all environment variables set on your system.

To get the devices information, enter the below command in the command line.

 

clinfo

 

 

Please run the below commands which display the GPU specifications of the system.

 

lspci | grep -i vga
lshw -C display

 

 

Please let us know if you face any issues in the Intel Devcloud.

 

Thanks and Regards,

Pendyala Sesha Srinivas

0 Kudos
SeshaP_Intel
Moderator
5,199 Views

Hi,


Has the information provided above helped? If yes, could you please confirm whether we can close this thread from our end?


Thanks and Regards,

Pendyala Sesha Srinivas


0 Kudos
SeshaP_Intel
Moderator
5,109 Views

Hi,


We assume that your issue is resolved. If you need any additional information, please post a new question as this thread will no longer be monitored by Intel.


Thanks and Regards,

Pendyala Sesha Srinivas


0 Kudos
MikeP123
Novice
3,844 Views

Hello,

Was the solution to this problem ever found  I also encounter this when running any of the FPGA examples on DevCloud -

 

./vector-add-buffers.fpga
Running on device: pac_a10 : Intel PAC Platform (pac_eb00000)
Vector size: 10000
An exception is caught for vector add.
terminate called after throwing an instance of 'sycl::_V1::runtime_error'
what(): Invalid device program image: size is zero -30 (PI_ERROR_INVALID_VALUE)
Aborted (core dumped)

 

Thanks,

Mike

0 Kudos
MikeP123
Novice
3,675 Views

Update.  The problem for me turned out to be the compilation step. I had been specifying -DFPGA_DEVICE=Arria10, but this is the correct way to do it -

 

cmake .. -DFPGA_DEVICE=/opt/intel/oneapi/intel_a10gx_pac:pac_a10

 

-Mike

0 Kudos
Reply