- Marcar como nuevo
- Favorito
- Suscribir
- Silenciar
- Suscribirse a un feed RSS
- Resaltar
- Imprimir
- Informe de contenido inapropiado
I want to solve X in a linear system A*X=B with a constraint that all elements in X are non-negative. It is a Non-negative Least Squares (NNLS) problem. Do you know which function in the MKL library for this problem? I tried to use trnlspbc_solve(), the Nonlinear Least Squares Problem with Linear Constraints, but it doesn't work well. Any ideas?
Enlace copiado
- Marcar como nuevo
- Favorito
- Suscribir
- Silenciar
- Suscribirse a un feed RSS
- Resaltar
- Imprimir
- Informe de contenido inapropiado
You may choose a suitable NNLS solver from the list provided at http://plato.asu.edu/sub/nonlsq.html , under the heading "THE CONSTRAINED LSQ-PROBLEM".
- Marcar como nuevo
- Favorito
- Suscribir
- Silenciar
- Suscribirse a un feed RSS
- Resaltar
- Imprimir
- Informe de contenido inapropiado
Thank you for your reply, mecej4! I know "Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974" could solve it. But I prefer to use MKL to do it. Does MKL have any solutions? When I use trnlspbc_solve(), it is time-consuming and the result is a little bit different than NNLS. Any comments about using trnlspbc_solve() to do linear least square problem with constraints?
- Marcar como nuevo
- Favorito
- Suscribir
- Silenciar
- Suscribirse a un feed RSS
- Resaltar
- Imprimir
- Informe de contenido inapropiado
At this point it would be useful to have a working example source code that exhibits slow performance with trnlspbc_solve(). Even a mathematical problem definition would help. I have used trnlsp() a number of times, and it has always performed quite well. Your problem may use specific functions and bounds that trigger a slowdown, which is why a full description is needed.
- Suscribirse a un feed RSS
- Marcar tema como nuevo
- Marcar tema como leído
- Flotar este Tema para el usuario actual
- Favorito
- Suscribir
- Página de impresión sencilla