- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello,
I'm trying to convert a Tensorflow model to openvino using model optimizer.
I'm using version openvino_2019.1.133
I run the command of the optimizer and all is ok as you can see below:
python mo_tf.py --input_model "model_frozen_29604.pb" --output_dir "openvino" --input_shape [1,512,512,3] --output "prob" --input "input"
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: ...model_frozen_29604.pb
- Path for generated IR: ...openvino
- IR output name: model_frozen_29604
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: input
- Output layers: prob
- Input shapes: [1,512,512,3]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: None
- Operations to offload: None
- Patterns to offload: None
- Use the config file: None
Model Optimizer version: 2019.1.0-341-gc9b66a2
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: ...openvino\model_frozen_29604.xml
[ SUCCESS ] BIN file: ...openvino\model_frozen_29604.bin
[ SUCCESS ] Total execution time: 103.00 seconds.
But then when i try to test the port using the python segmentation_demo.py it fails here:
if plugin.device == "CPU": supported_layers = plugin.get_supported_layers(net) not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error("Following layers are not supported by the plugin for specified device {}:\n {}". format(plugin.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1)
and shows me the following error message:
Following layers are not supported by the plugin for specified device CPU:
DeepLab_v3/ASPP_layer/ResizeBilinear, DeepLab_v3/ResizeBilinear
Any help please?
What i'm i missing here?
thank you very much.
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
even im also getting the same error on my new OAK-D device /// got successfully converted into IR // but when i try to convert them into blob format .. it fails..// only for deeplabv3 its showing error.. :((
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page