- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I firstly convert an .onnx model into .xml and .bin files.
root@f920ae206f6f:/opt/intel/openvino_2019.1.094/deployment_tools/model_optimize
r# python3 mo_onnx.py --input_model /data_openvino/model_23.onnx --input_shape [1,3,224,224]
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /data_openvino/model_23.onnx
- Path for generated IR: /opt/intel/openvino_2019.1.094/deployment_tools/model_optimizer/.
- IR output name: model_23
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: [1,3,224,224]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
ONNX specific parameters:
Model Optimizer version: 2019.1.0-341-gc9b66a2
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: /opt/intel/openvino_2019.1.094/deployment_tools/model_optimizer/./model_23.xml
[ SUCCESS ] BIN file: /opt/intel/openvino_2019.1.094/deployment_tools/model_optimizer/./model_23.bin
[ SUCCESS ] Total execution time: 19.00 seconds.
Then, I use the infrence_engine to run the human_pose_estimation_demo
root@f920ae206f6f:/opt/intel/openvino_2019.1.094/deployment_tools/inference_engine# /root/inference_engine_samples_build/intel64/Release/human_pose_estimation_demo -i luboshangke.mp4 -m ../model_optimizer/model_23.xml -d CPU
InferenceEngine:
API version ............ 1.6
Build .................. custom_releases/2019/R1_c9b66a26e4d65bb986bb740e73f58c6e9e84c7c2
[ INFO ] Parsing input parameters
[ INFO ] Parsing input parameters: before judge FLAGS_i
[ INFO ] Parsing input parameters: after judge FLAGS_i
[ INFO ] Parsing input parameters before return true
[ INFO ] before huamnposeestimator estimator
after cap read image
[ ERROR ] std::bad_alloc
Then,I went to the ./samples/human_pose_estimation_demo/main.cpp and src/human_pose_estimator.cpp, and std::cout some sentences.
root@f920ae206f6f:/opt/intel/openvino_2019.1.094/deployment_tools/inference_engine# /root/inference_engine_samples_build/intel64/Release/human_pose_estimation_demo -i luboshangke.mp4 -m ../model_optimizer/model_23.xml -d CPU
InferenceEngine:
API version ............ 1.6
Build .................. custom_releases/2019/R1_c9b66a26e4d65bb986bb740e73f58c6e9e84c7c2
[ INFO ] Parsing input parameters
[ INFO ] Parsing input parameters: before judge FLAGS_i
[ INFO ] Parsing input parameters: after judge FLAGS_i
[ INFO ] Parsing input parameters before return true
[ INFO ] before huamnposeestimator estimator
bin file name../model_optimizer/model_23.bin
input info0x56353fb35a30
inputInfo->getTensorDesc().getDims()[3]224
inputInfo->getTensorDesc().getDims()[2]224
outputInfo:1
outputBlobsIt
after cap read image
[ ERROR ] std::bad_alloc
but with the downloaded human-pose-estimation-0001.xml,it is ok,
root@f920ae206f6f:/opt/intel/openvino_2019.1.094/deployment_tools/inference_engine# /root/inference_engine_samples_build/intel64/Release/human_pose_estimation_demo -i luboshangke.mp4 -m /data_openvino/human-pose-estimation-0001.xml -d CPU
InferenceEngine:
API version ............ 1.6
Build .................. custom_releases/2019/R1_c9b66a26e4d65bb986bb740e73f58c6e9e84c7c2
[ INFO ] Parsing input parameters
[ INFO ] Parsing input parameters: before judge FLAGS_i
[ INFO ] Parsing input parameters: after judge FLAGS_i
[ INFO ] Parsing input parameters before return true
[ INFO ] before huamnposeestimator estimator
bin file name/data_openvino/human-pose-estimation-0001.bin
input info0x55e2a09e98c0
inputInfo->getTensorDesc().getDims()[3]456
inputInfo->getTensorDesc().getDims()[2]256
outputInfo:2
outputBlobsIt
lallaal
[ INFO ] after huamnposeestimator estimator
[ INFO ] after image estimator
To close the application, press 'CTRL+C' or any key with focus on the output window
[ INFO ] after render human pose
what should I do? thank u very much!
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Zheng, Rui,
As I mentioned in a very similar post on the dldt forum github issue 155 please tell me about the model you are using. Is it a publicly available model or is it a custom model you built ? If it's custom, can you attach it here ?
Thanks,
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I went to the github https://github.com/opencv/dldt/issues/155 , I am also it's questioner. I replied it.
Thanks.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Zheng, Rui,
OpenVino 2019 R1.1 was just released. Can you kindly give it a try ?
Thanks,
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello, I use openvino_2019.1.144, sadly, get the same error.
root@940453dbe675:/opt/intel/openvino_2019.1.144/deployment_tools/model_optimize
r# python3 mo_onnx.py --input_model /data_openvino/model_23.onnx --input_shape [1,3,224,224]
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /data_openvino/model_23.onnx
- Path for generated IR: /opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/.
- IR output name: model_23
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: [1,3,224,224]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
ONNX specific parameters:
Model Optimizer version: 2019.1.1-83-g28dfbfd
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: /opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/./model_23.xml
[ SUCCESS ] BIN file: /opt/intel/openvino_2019.1.144/deployment_tools/model_optimizer/./model_23.bin
[ SUCCESS ] Total execution time: 21.62 seconds.
root@940453dbe675:/opt/intel/openvino_2019.1.144/deployment_tools/inference_engi
ne/samples# sudo ./build_samples.sh
...
[ 99%] Linking CXX executable ../../intel64/Release/multi-channel-face-detection-demo
[ 99%] Built target multi-channel-face-detection-demo
[100%] Linking CXX executable ../../intel64/Release/multi-channel-human-pose-estimation-demo
[100%] Built target multi-channel-human-pose-estimation-demo
Build completed, you can find binaries for all samples in the /root/inference_engine_samples_build/intel64/Release subfolder.
root@940453dbe675:/opt/intel/openvino_2019.1.144/deployment_tools# /root/inferen
ce_engine_samples_build/intel64/Release/human_pose_estimation_demo -i /data_openvino/luboshangke_CUT.mp4 -m ./model_optimizer/model_23.xml -d CPU
InferenceEngine:
API version ............ 1.6
Build .................. custom_releases/2019/R1.1_28dfbfdd28954c4dfd2f94403dd8dfc1f411038b
[ INFO ] Parsing input parameters
[ ERROR ] std::bad_alloc
root@940453dbe675:/opt/intel/openvino_2019.1.144/deployment_tools# /root/inferen
ce_engine_samples_build/intel64/Release/human_pose_estimation_demo -i /data_openvino/luboshangke_CUT.mp4 -m /data_openvino/graph_opt.xml -d CPU
InferenceEngine:
API version ............ 1.6
Build .................. custom_releases/2019/R1.1_28dfbfdd28954c4dfd2f94403dd8dfc1f411038b
[ INFO ] Parsing input parameters
[ ERROR ] std::bad_alloc
Do you have any ideas?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Zheng, Rui,
OpenVino 2019R1.1 is actually openvino_2019.1.148. Can you kindly try with openvino_2019.1.148 ?
Thanks,
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Emmm, I found the bottom of the converted both .xml is different from human-pose-estimation-0001.xml. The graph_opt.xml layer don not have datas, If I converted wrong or something else?
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I went to the web of openvino and download, It sent me an email , I download customizable packages, it's also 2019.1.144.
Additionally, after comparing with human-pose-estimation-0001-FP32.xml which is also having no data at the bottom at the .xml,maybe I loss the information such as '<output value="['Mconv7_stage2_L1', 'Mconv7_stage2_L2']"/>', I add two layers in graph_opt.pb, such as ' <output value="['Openpose/MConv_Stage6_L1_2_depthwise/depthwise','Openpose/MConv_Stage6_L1_5_pointwise/Conv2D']"/>' ,it's also not working.....
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear Zheng, Rui,
The latest OpenVino release should be openvino_2019.1.148 for 2019R1.1. Maybe you're not downloading the latest release. Can you try downloading from https://software.intel.com/en-us/openvino-toolkit/choose-download (or maybe your download location is different if not US-based) ?
Thanks,
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Thank u. You are right, my download location is not US-based, I just tried the download link again and registered I am from US, hhha, it's not working. Can you kindly share an openvino_2019.1.148 full package using google drive?

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page