Community
cancel
Showing results for 
Search instead for 
Did you mean: 
Beginner
220 Views

Error when running python script using the Open Vino Inference Engine on the Jupyter Notebook

Hello there, when i run this code on my Jupyter Notebook I'm getting this error

%%writefile person_detect.py

import numpy as np
import time
from openvino.inference_engine import IENetwork, IECore
import os
import cv2
import argparse
import sys


class Queue:
    '''
    Class for dealing with queues
    '''
    def __init__(self):
        self.queues=[]

    def add_queue(self, points):
        self.queues.append(points)

    def get_queues(self, image):
        for q in self.queues:
            x_min, y_min, x_max, y_max=q
            frame=image[y_min:y_max, x_min:x_max]
            yield frame
    
    def check_coords(self, coords):
        d={k+1:0 for k in range(len(self.queues))}
        for coord in coords:
            for i, q in enumerate(self.queues):
                if coord[0]>q[0] and coord[2]<q[2]:
                    d[i+1]+=1
        return d


class PersonDetect:
    '''
    Class for the Person Detection Model.
    '''

    def __init__(self, model_name, device, threshold=0.60):
        self.model_weights=model_name+'.bin'
        self.model_structure=model_name+'.xml'
        self.device=device
        self.threshold=threshold

        try:
            self.core = IECore()
            self.model = self.core.read_network(self.model_structure, self.model_weights)
        except Exception as e:
            raise ValueError("Could not Initialise the network. Have you enterred the correct model path?")

        self.input_name=next(iter(self.model.inputs))
        self.input_shape=self.model.inputs[self.input_name].shape
        self.output_name=next(iter(self.model.outputs))
        self.output_shape=self.model.outputs[self.output_name].shape

    def load_model(self):
        '''
        TODO: This method needs to be completed by you
        '''
        # load model
        self.core = IECore()
        self.net = self.core.load_network(network=self.model, device_name=self.device, num_requests=1)
    
        print("Network already loaded")
    
    def predict(self, image):
        '''
        TODO: This method needs to be completed by you
        '''
        input_image = image
        
        # name of the input node
        input_name = self.input_name
        # Preprocess the image
        proc_image = self.preprocess_input(image)
        input_dict = {input_name:proc_image}
        #start async inference
        print('Starting async inference')
        infer_request = self.net.start_async(request_id=0, inputs=input_dict)
        infer_status = infer_request.wait()
        if infer_status == 0:
            print('waiting for inference')
            output = infer_request.outputs[self.output_name]
            print('Obtain coords for thresholds')
            box = self.preprocess_outputs(output)
            print('Lets gooooooooo!')   
        return self.draw_outputs(box, input_image)
        print('Its done')   
    
    def draw_outputs(self, outputs, image):
        '''
        TODO: This method needs to be completed by you
        '''
        width = image.shape[1]
        height = image.shape[0]
        
        coords = []
        for box in outputs[0][0]:
            conf = box[2]
            if conf >= self.threshold:
                xmin = int(box[3] * width)
                ymin = int(box[4] * height)
                xmax = int(box[5] * width)
                ymax = int(box[6] * height)
                cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (0,255,0), 1)
                coords.append((xmin, ymin, xmax, ymax))
        
        return coords, image 
        print('Hello Keith')
        
    def preprocess_outputs(self, outputs):
        '''
        TODO: This method needs to be completed by you
        '''
        boxes = []
        for person in outputs[0][0]:
            if person[2] > self.threshold:
                boxes.append([person[3:]])
        return boxes        
    

    def preprocess_input(self, image):
        '''
        TODO: This method needs to be completed by you
        '''
        image_p = cv2.resize(image, (self.input_shape[3], self.input_shape[2]))
        image_p = image_p.transpose((2,0,1))
        image_p = image_p.reshape(1, *image_p.shape)
        
        return image_p


def main(args):
    model=args.model
    device=args.device
    video_file=args.video
    max_people=args.max_people
    threshold=args.threshold
    output_path=args.output_path

    start_model_load_time=time.time()
    pd= PersonDetect(model, device, threshold)
    pd.load_model()
    total_model_load_time = time.time() - start_model_load_time

    queue=Queue()
    
    try:
        queue_param=np.load(args.queue_param)
        for q in queue_param:
            queue.add_queue(q)
    except:
        print("error loading queue param file")

    try:
        cap=cv2.VideoCapture(video_file)
    except FileNotFoundError:
        print("Cannot locate video file: "+ video_file)
    except Exception as e:
        print("Something else went wrong with the video file: ", e)
    
    initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    out_video = cv2.VideoWriter(os.path.join(output_path, 'output_video.mp4'), cv2.VideoWriter_fourcc(*'avc1'), fps, (initial_w, initial_h), True)
    
    counter=0
    start_inference_time=time.time()

    try:
        while cap.isOpened():
            ret, frame=cap.read()
            if not ret:
                break
            counter+=1
            
            coords, image= pd.predict(frame)
            num_people= queue.check_coords(coords)
            print(f"Total People in frame = {len(coords)}")
            print(f"Number of people in queue = {num_people}")
            out_text=""
            y_pixel=25
            
            for k, v in num_people.items():
                out_text += f"No. of People in Queue {k} is {v} "
                if v >= int(max_people):
                    out_text += f" Queue full; Please move to next Queue "
                cv2.putText(image, out_text, (15, y_pixel), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
                out_text=""
                y_pixel+=40
            out_video.write(image)
            
        total_time=time.time()-start_inference_time
        total_inference_time=round(total_time, 1)
        fps=counter/total_inference_time

        with open(os.path.join(output_path, 'stats.txt'), 'w') as f:
            f.write(str(total_inference_time)+'\n')
            f.write(str(fps)+'\n')
            f.write(str(total_model_load_time)+'\n')

        cap.release()
        cv2.destroyAllWindows()
    except Exception as e:
        print("Could not run Inference: ", e)

if __name__=='__main__':
    parser=argparse.ArgumentParser()
    parser.add_argument('--model', required=True)
    parser.add_argument('--device', default='CPU')
    parser.add_argument('--video', default=None)
    parser.add_argument('--queue_param', default=None)
    parser.add_argument('--output_path', default='/results')
    parser.add_argument('--max_people', default=2)
    parser.add_argument('--threshold', default=0.60)
    
    args=parser.parse_args()

    main(args)

 

I'm getting this error 

Network already loaded
Starting async inference
waiting for inference
Obtain coords for thresholds
Lets gooooooooo!
Could not run Inference:  invalid index to scalar variable.
results/
results/manufacturing/
results/manufacturing/cpu/
results/manufacturing/cpu/output_video.mp4
stderr.log

 

What could be the problem with my code? Thank You

 

0 Kudos
2 Replies
Highlighted
196 Views

Re: Error when running python script using the Open Vino Inference Engine on the Jupyter Notebook

Hi Keith,

 

Thanks for reaching out. From the output snippet you have attached, it's not clear what is the problem. Can you please provide more information about the error. You can check the stderr file for the job to find the error log.

Regards.

Alaa

0 Kudos
Highlighted
Beginner
98 Views

Re: Error when running python script using the Open Vino Inference Engine on the Jupyter Notebook

Hello Keith, 
                  

def __init__(self, model_name, device, threshold=0.60):
        self.model_weights=model_name+'.bin'
        self.model_structure=model_name+'.xml'
        self.device=device
        self.threshold=threshold

        try:
            self.core = IECore()
            self.model = self.core.read_network(self.model_structure, self.model_weights)
        except Exception as e:
            raise ValueError("Could not Initialise the network. Have you enterred the correct model path?")

In this part of your code, you have already initialized instance of the Inference Engine core while using read_network so you don't need to write again 

self.core = IECore()

this line of code while loading model using Load_model function.  

0 Kudos