- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi,
I am trying to convert tinyyolo v2 onnx model to intel IR using model optimizer. Seeing few errors:
Command used :
python mo.py --input_model c:\OpenVino\OpenVino_Dependencies\ONNX\TinyYoLo\Tiny_YOLO_V2_model_fp16.onnx
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: c:\OpenVino\OpenVino_Dependencies\ONNX\TinyYoLo\Tiny_YOLO_V2_model_fp16.onnx
- Path for generated IR: C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\model_optimizer\.
- IR output name: Tiny_YOLO_V2_model_fp16
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
ONNX specific parameters:
Model Optimizer version: 2019.3.0-408-gac8584cb7
[ ERROR ] Shape [ -1 3 416 416] is not fully defined for output 0 of "scalerPreprocessor/mul_". Use --input_shape with positive integers to override model input shapes.
[ ERROR ] Cannot infer shapes or values for node "scalerPreprocessor/mul_".
[ ERROR ] Not all output shapes were inferred or fully defined for node "scalerPreprocessor/mul_".
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #40.
[ ERROR ]
[ ERROR ] It can happen due to bug in custom shape infer function <function Elementwise.__init__.<locals>.<lambda> at 0x000001619DAF1288>.
[ ERROR ] Or because the node inputs have incorrect values/shapes.
[ ERROR ] Or because input shapes are incorrect (embedded to the model or passed via --input_shape).
[ ERROR ] Run Model Optimizer with --log_level=DEBUG for more information.
[ ERROR ] Not all output shapes were inferred or fully defined for node "scalerPreprocessor/mul_".
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #40.
Stopped shape/value propagation at "scalerPreprocessor/mul_" node.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #38.
Exception occurred during running replacer "REPLACEMENT_ID" (<class 'extensions.middle.PartialInfer.PartialInfer'>): Not all output shapes were inferred or fully defined for node "scalerPreprocessor/mul_".
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #40.
Stopped shape/value propagation at "scalerPreprocessor/mul_" node.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #38.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Ajay,
Try using –input_shape parameter with positive integers
Refer to FAQ (question 40).
Best Regards,
Surya
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Ajay,
Try using –input_shape parameter with positive integers
Refer to FAQ (question 40).
Best Regards,
Surya
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Thanks Surya. xml and bin file generated after adding the --input_shape (1,3,227,227).
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page