Community
cancel
Showing results for 
Search instead for 
Did you mean: 
New Contributor I
115 Views

FormatReader load dynamic images

Jump to solution

hi, i am trying to customize C:\Program Files (x86)\IntelSWTools\openvino\inference_engine\samples\cpp\object_detection_sample_ssd to output as dll, 

below is my code

__declspec(dllexport) void Classify_Image(unsigned char* img_pointer, long data_len,
		char* out_result, int length_of_out_result, int top_n_results)
	{
		
		std::vector<unsigned char> inputImageBytes(img_pointer, img_pointer + data_len);
		cv::Mat image = cv::imdecode(inputImageBytes,cv::IMREAD_COLOR);
		//cv::imwrite("lala.jpg", image);
		
		if (inputInfo == nullptr) {
			initialize();
		}

		// --------------------------- 8. Create infer request -------------------------------------------------
				//slog::info << "Create infer request" << slog::endl;
		InferRequest infer_request = executable_network.CreateInferRequest();
		// -----------------------------------------------------------------------------------------------------

		std::vector<std::shared_ptr<unsigned char>> imagesData, originalImagesData;
		std::vector<size_t> imageWidths, imageHeights;
		//FormatReader::ReaderPtr reader("C:\\Users\\LaserTrac\\Desktop\\la.jpg");
		cv::Mat dst;

		cv::resize(image, dst, cv::Size(400, 225));
		cv::imwrite("lala_m.jpg", dst);
		//std::shared_ptr<unsigned char> originalData(image.data);
		std::shared_ptr<unsigned char> originalData(image.data);

		std::shared_ptr<unsigned char> data1(dst.data);
		//
		originalImagesData.push_back(originalData);
		imagesData.push_back(data1);
		imageWidths.push_back(1280);
		imageHeights.push_back(720);

		if (imagesData.empty()) throw std::logic_error("Valid input images were not found!");

		size_t batchSize = network.getBatchSize();
		
		if (batchSize != imagesData.size()) {
			slog::warn << "Number of images " + std::to_string(imagesData.size()) + \
				" doesn't match batch size " + std::to_string(batchSize) << slog::endl;
			batchSize = std::min(batchSize, imagesData.size());
			slog::warn << "Number of images to be processed is " << std::to_string(batchSize) << slog::endl;
		}
		
		///** Creating input blob **/
		Blob::Ptr imageInput = infer_request.GetBlob(imageInputName);
		
		///** Filling input tensor with images. First b channel, then g and r channels **/
		MemoryBlob::Ptr mimage = as<MemoryBlob>(imageInput);
		if (!mimage) {
			slog::err << "We expect image blob to be inherited from MemoryBlob, but by fact we were not able "
				"to cast imageInput to MemoryBlob" << slog::endl;
			return;
		}
		
		//// locked memory holder should be alive all time while access to its buffer happens
		auto minputHolder = mimage->wmap();
		size_t num_channels = mimage->getTensorDesc().getDims()[1];
		size_t image_size = mimage->getTensorDesc().getDims()[3] * mimage->getTensorDesc().getDims()[2];

		unsigned char *data = minputHolder.as<unsigned char *>();

		/** Iterate over all input images **/
		for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) {
			/** Iterate over all pixel in image (b,g,r) **/
			for (size_t pid = 0; pid < image_size; pid++) {
				/** Iterate over all channels **/
				for (size_t ch = 0; ch < num_channels; ++ch) {
					/**          [images stride + channels stride + pixel id ] all in bytes            **/
					data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch];
				}
			}
		}

		if (imInfoInputName != "") {
			Blob::Ptr input2 = infer_request.GetBlob(imInfoInputName);
			auto imInfoDim = inputsInfo.find(imInfoInputName)->second->getTensorDesc().getDims()[1];

			/** Fill input tensor with values **/
			MemoryBlob::Ptr minput2 = as<MemoryBlob>(input2);
			if (!minput2) {
				slog::err << "We expect input2 blob to be inherited from MemoryBlob, but by fact we were not able "
					"to cast input2 to MemoryBlob" << slog::endl;
				return;
			}
			// locked memory holder should be alive all time while access to its buffer happens
			auto minput2Holder = minput2->wmap();
			float *p = minput2Holder.as<PrecisionTrait<Precision::FP32>::value_type *>();

			for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) {
				p[image_id * imInfoDim + 0] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[2]);
				p[image_id * imInfoDim + 1] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[3]);
				for (size_t k = 2; k < imInfoDim; k++) {
					p[image_id * imInfoDim + k] = 1.0f;  // all scale factors are set to 1.0
				}
			}
		}
		// -----------------------------------------------------------------------------------------------------

		// --------------------------- 10. Do inference ---------------------------------------------------------
		slog::info << "Start inference" << slog::endl;
		infer_request.Infer();
		// -----------------------------------------------------------------------------------------------------

		// --------------------------- 11. Process output -------------------------------------------------------
		slog::info << "Processing output blobs" << slog::endl;

		const Blob::Ptr output_blob = infer_request.GetBlob(outputName);
		MemoryBlob::CPtr moutput = as<MemoryBlob>(output_blob);
		if (!moutput) {
			throw std::logic_error("We expect output to be inherited from MemoryBlob, "
				"but by fact we were not able to cast output to MemoryBlob");
		}
		// locked memory holder should be alive all time while access to its buffer happens
		auto moutputHolder = moutput->rmap();
		const float *detection = moutputHolder.as<const PrecisionTrait<Precision::FP32>::value_type *>();

		std::vector<std::vector<int> > boxes(batchSize);
		std::vector<std::vector<int> > classes(batchSize);

		///* Each detection has image_id that denotes processed image */
		std::string result = "OB_DATA=";
		int num_detect = 0;
		
		for (int curProposal = 0; curProposal < maxProposalCount; curProposal++) {
			auto image_id = static_cast<int>(detection[curProposal * objectSize + 0]);
			if (image_id < 0 ) {
				slog::info << "ends with break "<<slog::endl;
				break;
			}

			float confidence = detection[curProposal * objectSize + 2];
			auto label = static_cast<int>(detection[curProposal * objectSize + 1]);
			auto xmin = static_cast<int>(detection[curProposal * objectSize + 3] * imageWidths[image_id]);
			auto ymin = static_cast<int>(detection[curProposal * objectSize + 4] * imageHeights[image_id]);
			auto xmax = static_cast<int>(detection[curProposal * objectSize + 5] * imageWidths[image_id]);
			auto ymax = static_cast<int>(detection[curProposal * objectSize + 6] * imageHeights[image_id]);

			std::cout << "[" << curProposal << "," << label << "] element, prob = " << confidence <<
					"    (" << xmin << "," << ymin << ")-(" << xmax << "," << ymax << ")" << " batch id : " << image_id;

			if (confidence > 0.5) {
				num_detect += 1;
				result += std::to_string(confidence);
				
				result += ","+ std::to_string(label);
				result += "," + std::to_string(xmin);
				result += "," + std::to_string(ymin);
				result += "," + std::to_string(xmax);
				result += "," + std::to_string(ymax);
				
				/** Drawing only objects with >50% probability **/
				classes[image_id].push_back(label);
				boxes[image_id].push_back(xmin);
				boxes[image_id].push_back(ymin);
				boxes[image_id].push_back(xmax - xmin);
				boxes[image_id].push_back(ymax - ymin);
				//std::cout << " WILL BE PRINTED!";
				/*std::cout << std::endl;*/
				//slog::info << " add prediction" << slog::endl;
			}
			result += ";";
			std::cout << std::endl;
		}
		
		data1.reset();
		originalData.reset();
		
		//dst.release();
		//image.release();
		

		length_of_out_result = (int)result.size();
		
		std::copy(result.begin(), result.end(), out_result);
		out_result[std::min(length_of_out_result - 1, (int)result.size())] = 0;
                std::cout << "end code"<<std::endl;
		
	}
}

in the above code i have changed only FormatReader with cv::Mat to store image dynamically, with FormatReader code is working right but i want to load image dynamically from c#,

so can anyone please have a look. in c# when i call the program it executes fine  i can see the logs in visual studio console logs but after printing "end code" it gives error.

i have checked with FormatReader.h from sample codes with physical path of image file name and code works fine i can also receive the output in c# code. or somehow if i can use FormatReader from samples with the (unsigend char*) above approach.  

 

please help.

 

 

0 Kudos

Accepted Solutions
Highlighted
Moderator
92 Views

Hi Amit,


Please refer to Hello Classification C++ Sample, which loads image from Mat for inferencing.

https://github.com/openvinotoolkit/openvino/blob/master/inference-engine/samples/hello_classificatio...


Regards,

Munesh


View solution in original post

2 Replies
Highlighted
Moderator
93 Views

Hi Amit,


Please refer to Hello Classification C++ Sample, which loads image from Mat for inferencing.

https://github.com/openvinotoolkit/openvino/blob/master/inference-engine/samples/hello_classificatio...


Regards,

Munesh


View solution in original post

Highlighted
New Contributor I
89 Views

thanks for your reply its working now with dynamic images

 

thank you 

0 Kudos