- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello, I'm using 2020.3.
I converted "human-pose-estimation-3d-0001" using converter.py, but the conversion fails.
openvino@dd50f6fa0747:~$ /opt/intel/openvino/deployment_tools/tools/model_downloader/converter.py --name human-pose-estimation-3d-0001 ========= Converting human-pose-estimation-3d-0001 to ONNX Conversion to ONNX command: /usr/bin/python3 /opt/intel/openvino/deployment_tools/tools/model_downloader/pytorch_to_onnx.py --model-path=/home/openvino/public/human-pose-estimation-3d-0001 --model-name=PoseEstimationWithMobileNet --model-param=is_convertible_by_mo=True --import-module=model --weights=/home/openvino/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.pth --input-shape=1,3,256,448 --input-names=data --output-names=features,heatmaps,pafs --output-file=/home/openvino/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.onnx ONNX check passed successfully. ========= Converting human-pose-estimation-3d-0001 to IR (FP16) Conversion command: /usr/bin/python3 -- /opt/intel/openvino/deployment_tools/model_optimizer/mo.py --framework=onnx --data_type=FP16 --output_dir=/home/openvino/public/human-pose-estimation-3d-0001/FP16 --model_name=human-pose-estimation-3d-0001 --input=data '--mean_values=data[128.0,128.0,128.0]' '--scale_values=data[255.0,255.0,255.0]' --output=features,heatmaps,pafs --input_model=/home/openvino/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.onnx Model Optimizer arguments: Common parameters: - Path to the Input Model: /home/openvino/public/human-pose-estimation-3d-0001/human-pose-estimation-3d-0001.onnx - Path for generated IR: /home/openvino/public/human-pose-estimation-3d-0001/FP16 - IR output name: human-pose-estimation-3d-0001 - Log level: ERROR - Batch: Not specified, inherited from the model - Input layers: data - Output layers: features,heatmaps,pafs - Input shapes: Not specified, inherited from the model - Mean values: data[128.0,128.0,128.0] - Scale values: data[255.0,255.0,255.0] - Scale factor: Not specified - Precision of IR: FP16 - Enable fusing: True - Enable grouped convolutions fusing: True - Move mean values to preprocess section: False - Reverse input channels: False ONNX specific parameters: Model Optimizer version: [ ERROR ] Exception occurred during running replacer "REPLACEMENT_ID" (<class 'extensions.front.user_data_repack.UserDataRepack'>): No node with name features. For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #51. FAILED: human-pose-estimation-3d-0001
"single-human-pose-estimation-0001" as well.
I get same error when I convert using the downloader.py and converter.py.
I get an error when using Docker.
Are there any workarounds?
When I do the same thing in 2020.2, I can convert without any problems and no error.
Also, when converting in mo.py, "Model Optimizer version:" is not shown in 2020.3 as a blank field.
2020.2 is shown as "2020.2.0-60-g0bc66e26ff".
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello,
have you installed required python modules with requirement_pytorch.in ?
Regards,
Vladimir
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Vladimir.
Yes, I installed it with "pip install -r ./requirements-pytorch.in".
The mo and converter tool are installed under a virtual environment(venv).
"sudo . /install_prerequisites.sh venv" to install them.
requirements-pytorch.in is also installed under the venv environment.
Again, it's not a problem in 2020.2, but only in 2020.3.
Regards,
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Kobayashi.
Seems like this is the problem with PyTorch 1.5 version described in https://github.com/opencv/open_model_zoo/pull/1149
As a workaround you could either use PyTorch version lower than 1.5 for PyTorch-ONNX model conversion or use the hot fix provided within the pull request in the link above.
Thanks for using OpenVINO toolkit.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I used hotfix for pytorch_to_onnx.py and it solved the problem.
Thanks for the useful information.
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page