- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
The code is prepared to do batch inference for object detection.
// ----------------------------------------------------------------------------------------------------- // --------------------------- 3. Configure input & output --------------------------------------------- // --------------------------- Prepare input blobs ----------------------------------------------------- slog::info << "Preparing input blobs" << slog::endl; /** Taking information about all topology inputs **/ InputsDataMap inputInfo(network.getInputsInfo()); if (inputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 input only"); auto inputInfoItem = *inputInfo.begin(); /** Specifying the precision and layout of input data provided by the user. * This should be called before load of the network to the device **/ inputInfoItem.second->setPrecision(Precision::U8); inputInfoItem.second->setLayout(Layout::NCHW); std::vector<std::shared_ptr<unsigned char>> imagesData = {}; std::vector<std::string> validImageNames = {}; for (const auto & i : imageNames) { FormatReader::ReaderPtr reader(i.c_str()); if (reader.get() == nullptr) { slog::warn << "Image " + i + " cannot be read!" << slog::endl; continue; } /** Store image data **/ std::shared_ptr<unsigned char> data( reader->getData(inputInfoItem.second->getTensorDesc().getDims()[3], inputInfoItem.second->getTensorDesc().getDims()[2])); if (data != nullptr) { imagesData.push_back(data); validImageNames.push_back(i); } } if (imagesData.empty()) throw std::logic_error("Valid input images were not found!"); /** Setting batch size using image count **/ network.setBatchSize(imagesData.size()); size_t batchSize = network.getBatchSize(); slog::info << "Batch size is " << std::to_string(batchSize) << slog::endl; // ----------------------------------------------------------------------------------------------------- // --------------------------- 4. Loading model to the device ------------------------------------------ slog::info << "Loading model to the device" << slog::endl; ExecutableNetwork executable_network = ie.LoadNetwork(network, FLAGS_d); // ----------------------------------------------------------------------------------------------------- // --------------------------- 5. Create infer request ------------------------------------------------- slog::info << "Create infer request" << slog::endl; InferRequest inferRequest = executable_network.CreateInferRequest(); // ----------------------------------------------------------------------------------------------------- // --------------------------- 6. Prepare input -------------------------------------------------------- for (auto & item : inputInfo) { Blob::Ptr inputBlob = inferRequest.GetBlob(item.first); SizeVector dims = inputBlob->getTensorDesc().getDims(); /** Fill input tensor with images. First b channel, then g and r channels **/ size_t num_channels = dims[1]; size_t image_size = dims[3] * dims[2]; auto data = inputBlob->buffer().as<PrecisionTrait<Precision::U8>::value_type *>(); /** Iterate over all input images **/ for (size_t image_id = 0; image_id < imagesData.size(); ++image_id) { /** Iterate over all pixel in image (b,g,r) **/ for (size_t pid = 0; pid < image_size; pid++) { /** Iterate over all channels **/ for (size_t ch = 0; ch < num_channels; ++ch) { /** [images stride + channels stride + pixel id ] all in bytes **/ data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch]; } } } } // ----------------------------------------------------------------------------------------------------- // --------------------------- 7. Do inference --------------------------------------------------------- size_t numIterations = 10; size_t curIteration = 0; std::condition_variable condVar; inferRequest.SetCompletionCallback( [&] { curIteration++; slog::info << "Completed " << curIteration << " async request execution" << slog::endl; if (curIteration < numIterations) { /* here a user can read output containing inference results and put new input to repeat async request again */ inferRequest.StartAsync(); } else { /* continue sample execution after last Asynchronous inference request execution */ condVar.notify_one(); } }); /* Start async request for the first time */ slog::info << "Start inference (" << numIterations << " asynchronous executions)" << slog::endl; inferRequest.StartAsync(); /* Wait all repetitions of the async request */ std::mutex mutex; std::unique_lock<std::mutex> lock(mutex); condVar.wait(lock, [&]{ return curIteration == numIterations; }); // ----------------------------------------------------------------------------------------------------- // --------------------------- 8. Process output ------------------------------------------------------- // ----------------------------------------------------------------------------------------------------- slog::info << "Processing output blobs" << slog::endl; OutputsDataMap outputsInfo(network.getOutputsInfo()); if (outputsInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 output only"); Blob::Ptr outputBlob = inferRequest.GetBlob(outputsInfo.begin()->first); std::string outputName; DataPtr outputInfo; for (const auto& out : outputsInfo) { if (out.second->getCreatorLayer().lock()->type == "DetectionOutput") { outputName = out.first; outputInfo = out.second; } } if (outputInfo == nullptr) { throw std::logic_error("Can't find a DetectionOutput layer in the topology"); } const SizeVector outputDims = outputInfo->getTensorDesc().getDims(); const int maxProposalCount = outputDims[2]; const int objectSize = outputDims[3]; if (objectSize != 7) { throw std::logic_error("Output item should have 7 as a last dimension"); } if (outputDims.size() != 4) { throw std::logic_error("Incorrect output dimensions for SSD model"); } /** Set the precision of output data provided by the user, should be called before load of the network to the device **/ outputInfo->setPrecision(Precision::FP32); /** Validating -nt value **/ const size_t resultsCnt = outputBlob->size() / batchSize; if (FLAGS_nt > resultsCnt || FLAGS_nt < 1) { slog::warn << "-nt " << FLAGS_nt << " is not available for this network (-nt should be less than " \ << resultsCnt + 1 << " and more than 0)\n will be used maximal value : " << resultsCnt << slog::endl; FLAGS_nt = resultsCnt; } const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(outputBlob->buffer());
At output processing, outputsInfo.begin()->first is just for the first image. How to get results for next images.
My object detection is based on Tensorflow's SSD model.
Link Copied
1 Reply
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear naing, nyan,
You could do it exactly as https://github.com/opencv/dldt/blob/2019/inference-engine/samples/object_detection_sample_ssd/main.cpp shows. Your batch_size may be 1 or 100 but see how images are organized according to batch_id.
for (size_t batch_id = 0; batch_id < batchSize; ++batch_id) { addRectangles(originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id], boxes[batch_id], classes[batch_id], BBOX_THICKNESS); const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp"; if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) { slog::info << "Image " + image_path + " created!" << slog::endl; } else { throw std::logic_error(std::string("Can't create a file: ") + image_path); } }
Hope it helps,
Thanks,
Shubha
Reply
Topic Options
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page