- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi
I prepared my own yolov3-tiny for use in raspberry pi 4 and NCS2.
and try to convert custom yolov3-tiny model to IR
this is my step
1. I try this command " python convert_weights_pb.py --class_names obj.names --data_format NHWC --weights_file train.weights --tiny " I got the file " frozen_darknet_yolov3_model.pb "
2. from my test.cfg file
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 8
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
so I edited yolo_v3_tiny.json and rename to yolo_v3_tiny_mymodel.json
[
{
"id": "TFYOLOV3",
"match_kind": "general",
"custom_attributes": {
"classes": 1,
"anchors": [10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319],
"coords": 4,
"num": 6,
"masks": [[3, 4, 5], [0, 1, 2]],
"entry_points": ["detector/yolo-v3-tiny/Reshape", "detector/yolo-v3-tiny/Reshape_4"]
}
}
]
3. I try next command " python mo_tf.py --input_model frozen_darknet_yolov3_model.pb --input_shape [1,416,416,3] --data_type FP16 --tensorflow_use_custom_operations_config yolo_v3_tiny_mymodel.json "
I got this error
(TF114CV41) D:\ML\tensorflow-yolo-v3-master>python mo_tf.py --input_model frozen_darknet_yolov3_model.pb --input_shape [1,416,416,3] --data_type FP16 --tensorflow_use_custom_operations_config yolo_v3_tiny_mymodel.json
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: D:\ML\tensorflow-yolo-v3-master\frozen_darknet_yolov3_model.pb
- Path for generated IR: D:\ML\tensorflow-yolo-v3-master\.
- IR output name: frozen_darknet_yolov3_model
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: [1,416,416,3]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP16
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: None
- Operations to offload: None
- Patterns to offload: None
- Use the config file: D:\ML\tensorflow-yolo-v3-master\yolo_v3_tiny_mymodel.json
Model Optimizer version: 2019.3.0-408-gac8584cb7
[ ERROR ] 2 elements of 16 were clipped to infinity while converting a blob for node [['detector/yolo-v3-tiny/Conv/BatchNorm/beta/read/Output_0/Data__const']] to <class 'numpy.float16'>.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #76.
[ ERROR ] List of operations that cannot be converted to Inference Engine IR:
[ ERROR ] FusedBatchNormV3 (11)
[ ERROR ] detector/yolo-v3-tiny/Conv/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_1/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_2/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_3/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_4/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_5/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_6/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_7/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_10/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_11/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_8/BatchNorm/FusedBatchNormV3
[ ERROR ] Part of the nodes was not converted to IR. Stopped.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #24.
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: D:\ML\tensorflow-yolo-v3-master\frozen_darknet_yolov3_model.pb
- Path for generated IR: D:\ML\tensorflow-yolo-v3-master\.
- IR output name: frozen_darknet_yolov3_model
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: [1,416,416,3]
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP16
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: None
- Operations to offload: None
- Patterns to offload: None
- Use the config file: D:\ML\tensorflow-yolo-v3-master\yolo_v3_tiny_mymodel.json
Model Optimizer version: 2019.3.0-408-gac8584cb7
[ ERROR ] 2 elements of 16 were clipped to infinity while converting a blob for node [['detector/yolo-v3-tiny/Conv/BatchNorm/beta/read/Output_0/Data__const']] to <class 'numpy.float16'>.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #76.
[ ERROR ] List of operations that cannot be converted to Inference Engine IR:
[ ERROR ] FusedBatchNormV3 (11)
[ ERROR ] detector/yolo-v3-tiny/Conv/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_1/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_2/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_3/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_4/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_5/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_6/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_7/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_10/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_11/BatchNorm/FusedBatchNormV3
[ ERROR ] detector/yolo-v3-tiny/Conv_8/BatchNorm/FusedBatchNormV3
[ ERROR ] Part of the nodes was not converted to IR. Stopped.
For more information please refer to Model Optimizer FAQ (https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimizer_FAQ.html), question #24.
please tell me how to solve this problem. I have attached my model in this post.
Link Copied
2 Replies
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi teeradet,
Thanks for reaching out. Could you please try converting your model using the latest version of OpenVINO™ toolkit (2020.4)?
Let us know if the issue persists.
Regards,
David C
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi teeradet,
This thread will no longer be monitored, as we got no response from you. If you have additional questions, please create a new discussion and we will help you there.
Regards,
David C.
Reply
Topic Options
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page