- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello,
I'm using RaspBerry + NCS2
I downloaded the VGG19 model through model_downloader and converted to IR.
when I try to run the model I have this error:
File "teste1_vgg.py", line 45, in <module>
out = net.forward()
cv2.error: OpenCV(4.0.1-openvino) /home/jenkins/workspace/OpenCV/OpenVINO/build/opencv/modules/dnn/src/op_inf_engine.cpp:553: error: (-215:Assertion failed) Failed to initialize Inference Engine backend: std::bad_alloc in function 'initPlugin'
So I have an memory error in the function forward() but I don´t know why.
Can you help please?
Python Code:
import cv2 as cv net = cv.dnn.readNet('vgg19.xml', 'vgg19.bin') net.setPreferableTarget(cv.dnn.DNN_TARGET_MYRIAD) frame_i = cv.imread('/home/pi/Desktop/modelos/classificacao/vgg19/car.bmp') dim=(224,224) frame = cv.resize(frame_i, dim) blob = cv.dnn.blobFromImage(frame, size=(224, 224), ddepth=cv.CV_8U) net.setInput(blob) out = net.forward()
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear gomes, antonio,
Before trying your hand at coding from scratch, why not try one of our classification samples on the Model Optimizer Generated IR for VGG19 ?
You can try the classification_sample or classification_sample_async (both available in Python or C++) for example.
Shubha
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi Shubha,
Thanks for reply.
Yes, I already tried the classification sample and it worked. But not matters I switched the VGG19 for the Resnet and it work fine for what I want.
Now, I need a segmention model and I'm trying to convert the mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28 on link https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html but I have always a error:
I already tried the follow commands but none worked:
mo_tf.py --input_model D:\MYRIAD\mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28\frozen_inference_graph.pb
or
mo_tf.py --input_model D:\MYRIAD\mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28\frozen_inference_graph.pb --input_shape (1,640,425,3) --data_type=FP16
or
mo_tf.py --input_meta_graph D:\MYRIAD\mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28\model.ckpt.meta --input_shape (1,640,425,3) --data_type=FP16
or
mo_tf.py --input_model D:\MYRIAD\mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28\frozen_inference_graph.pb --data_type=FP16
Is there a command missing? Thanks
Antonio
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Dear gomes, antonio,
Your mo_tf.py commands are not correct. Please follow the instructions here for converting Tensorflow Object Detection APIs via Model Optimizer:
Thanks,
Shubha
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page