- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hello,
I retrained the model "ssd_mobilenet_v2_coco_2018_03_29" from Tensorflow detection model zoo by following the procedures defined in Tensorflow Object Detection API using my own dataset. I also exported it using "object_detection/export_inference_graph.py" script. When I try to convert this model into IR representation, I got the following error (I got the same error when I overwrite the input shape with the parameter input_shape as well). I appreciate any help.
Thanks
python3 mo_tf.py --input_model /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000/frozen_inference_graph.pb --output_dir /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000 --tensorflow_use_custom_operations_config /home/logi/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json --tensorflow_object_detection_api_pipeline_config /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000/pipeline.config
Model Optimizer arguments:
Common parameters:
- Path to the Input Model: /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000/frozen_inference_graph.pb
- Path for generated IR: /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000
- IR output name: frozen_inference_graph
- Log level: ERROR
- Batch: Not specified, inherited from the model
- Input layers: Not specified, inherited from the model
- Output layers: Not specified, inherited from the model
- Input shapes: Not specified, inherited from the model
- Mean values: Not specified
- Scale values: Not specified
- Scale factor: Not specified
- Precision of IR: FP32
- Enable fusing: True
- Enable grouped convolutions fusing: True
- Move mean values to preprocess section: False
- Reverse input channels: False
TensorFlow specific parameters:
- Input model in text protobuf format: False
- Offload unsupported operations: False
- Path to model dump for TensorBoard: None
- List of shared libraries with TensorFlow custom layers implementation: None
- Update the configuration file with input/output node names: None
- Use configuration file used to generate the model with Object Detection API: /data/workspace/training_ncs_networks/train_model/models/model1/export-model-200000/pipeline.config
- Operations to offload: None
- Patterns to offload: None
- Use the config file: /home/logi/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json
Model Optimizer version: 1.5.12.49d067a0
[ ERROR ] Cannot infer shapes or values for node "MultipleGridAnchorGenerator/ToFloat_7".
[ ERROR ] NodeDef mentions attr 'Truncate' not in Op<name=Cast; signature=x:SrcT -> y:DstT; attr=SrcT:type; attr=DstT:type>; NodeDef: MultipleGridAnchorGenerator/ToFloat_7 = Cast[DstT=DT_FLOAT, SrcT=DT_INT32, Truncate=false, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_MultipleGridAnchorGenerator/ToFloat_7/x_port_0_ie_placeholder_0_0). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: MultipleGridAnchorGenerator/ToFloat_7 = Cast[DstT=DT_FLOAT, SrcT=DT_INT32, Truncate=false, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_MultipleGridAnchorGenerator/ToFloat_7/x_port_0_ie_placeholder_0_0)]]
Caused by op 'MultipleGridAnchorGenerator/ToFloat_7', defined at:
File "mo_tf.py", line 31, in <module>
sys.exit(main(get_tf_cli_parser(), 'tf'))
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/main.py", line 325, in main
return driver(argv)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/main.py", line 267, in driver
mean_scale_values=mean_scale)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/pipeline/tf.py", line 256, in tf2nx
partial_infer(graph)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/middle/passes/infer.py", line 153, in partial_infer
node.infer(node)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/front/tf/partial_infer/tf.py", line 60, in tf_native_tf_node_infer
tf_subgraph_infer(tmp_node)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/front/tf/partial_infer/tf.py", line 135, in tf_subgraph_infer
all_constants, output_tensors = get_subgraph_output_tensors(node)
File "/home/logi/intel/computer_vision_sdk_2018.5.445/deployment_tools/model_optimizer/mo/front/tf/partial_infer/tf.py", line 115, in get_subgraph_output_tensors
tf.import_graph_def(graph_def, name='')
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/importer.py", line 313, in import_graph_def
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): NodeDef mentions attr 'Truncate' not in Op<name=Cast; signature=x:SrcT -> y:DstT; attr=SrcT:type; attr=DstT:type>; NodeDef: MultipleGridAnchorGenerator/ToFloat_7 = Cast[DstT=DT_FLOAT, SrcT=DT_INT32, Truncate=false, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_MultipleGridAnchorGenerator/ToFloat_7/x_port_0_ie_placeholder_0_0). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: MultipleGridAnchorGenerator/ToFloat_7 = Cast[DstT=DT_FLOAT, SrcT=DT_INT32, Truncate=false, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_MultipleGridAnchorGenerator/ToFloat_7/x_port_0_ie_placeholder_0_0)]]
[ ERROR ]
[ ERROR ] It can happen due to bug in custom shape infer function <function tf_native_tf_node_infer at 0x7f37369a4488>.
[ ERROR ] Or because the node inputs have incorrect values/shapes.
[ ERROR ] Or because input shapes are incorrect (embedded to the model or passed via --input_shape).
[ ERROR ] Run Model Optimizer with --log_level=DEBUG for more information.
[ ERROR ] Stopped shape/value propagation at "MultipleGridAnchorGenerator/ToFloat_7" node.
For more information please refer to Model Optimizer FAQ (<INSTALL_DIR>/deployment_tools/documentation/docs/MO_FAQ.html), question #38.
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Umut the best way to debug this is to dump your model into a text readable file (Tensorflow documentation explains how to do this). Once you do search for node "MultipleGridAnchorGenerator/ToFloat_7", at or around. Check if MultipleGridAnchorGenerator has invalid values for shapes. For instance -1 would be such an invalid value.
Thanks,
Shubha
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page