- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
I'm recently trying on the accuracy test for mobilenet-v1-1.0-224. After I downloaded the model from the model_downloader to create .prototxt and .caffemodel file. I used the model_optimizer to create .xml and .bin for FP32 format, however, when I ran the accuracy_check.py code, the accuracy is very low. Is there anything I did wrong, FP32 should have a high accuracy instead.
For model_downloader:
$ python3 downloader.py --name mobilenet-v1-1.0-224 --output_dir ~/models
For model_optimizer:
$ python3 mo.py --input_model ~/models/public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.caffemodel --input_proto ~/models/public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.prototxt --data_type FP32 --output_dir ~/models/public/mobilenet-v1-1.0-224/ --input_shape [1,3,224,224] --input data --mean_values data[103.94,116.78,123.68] --scale_values data[58.8235294117647] --output prob --framework caffe --reverse_input_channels
For accuracy_check:
python3 accuracy_check.py --config /opt/intel/openvino_2019.3.376/deployment_tools/open_model_zoo/tools/accuracy_checker/configs/mobilenet-v1-1.0-224.yml -m /home/ubuntu/models/ -s /home/ubuntu/imagenet/val/ -a /home/ubuntu/imagenet/annotations/imagenet -td CPU -e /opt/intel/openvino_2019.3.376/deployment_tools/inference_engine/lib/intel64/ -M /opt/intel/openvino_2019.3.376/deployment_tools/model_optimizer/ -tf dlsdk -tt I8 -d /opt/intel/openvino_2019.3.376/deployment_tools/open_model_zoo/tools/accuracy_checker/dataset_definitions.yml
My mobilenet-v1-1.0-224.yml:
models:
- name: mobilenet-v1-1.0-224-cf
launchers:
- framework: caffe
model: public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.prototxt
weights: public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.caffemodel
adapter: classification
datasets:
- name: imagenet_1000_classes
preprocessing:
- type: resize
size: 256
- type: crop
size: 224
- type: normalization
mean: 103.94, 116.78, 123.68
std: 58.8235294
- name: mobilenet-v1-1.0-224
launchers:
- framework: dlsdk
tags:
- FP32
model: public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.xml
weights: public/mobilenet-v1-1.0-224/mobilenet-v1-1.0-224.bin
adapter: classification
- framework: dlsdk
tags:
- FP16
model: public/mobilenet-v1-1.0-224/FP16/mobilenet-v1-1.0-224.xml
weights: public/mobilenet-v1-1.0-224/FP16/mobilenet-v1-1.0-224.bin
adapter: classification
- framework: dlsdk
tags:
- I8sm
model: public/mobilenet-v1-1.0-224/I8sm/mobilenet-v1-1.0-224_i8.xml
weights: public/mobilenet-v1-1.0-224/I8sm/mobilenet-v1-1.0-224_i8.bin
adapter: classification
- framework: dlsdk
tags:
- I8
model: public/mobilenet-v1-1.0-224/I8/mobilenet_v1_1.0_224_frozen_i8.xml
weights: public/mobilenet-v1-1.0-224/I8/mobilenet_v1_1.0_224_frozen_i8.bin
adapter: classification
datasets:
- name: imagenet_1000_classes
data_source: /home/ubuntu/imagenet/val/ILSVRC2012_img_val
annotation: /home/ubuntu/imagenet/annotations/imagenet.pickle
dataset_meta: /home/ubuntu/imagenet/annotations/imagenet.json
annotation_conversion:
converter: imagenet
annotation_file: /home/ubuntu/imagenet/val.txt
labels_file: /home/ubuntu/imagenet/synset_words.txt
has_background: True
subsample_size: 2000
#has_background: True
preprocessing:
- type: bgr_to_rgb
- type: resize
size: 256
- type: crop
size: 224
- type: normalization
mean: 103.94, 116.78, 123.68
std: 58.8235294
metrics:
- name: accuracy@top1
type: accuracy
top_k: 1
- name: accuracy@top5
type: accuracy
top_k: 5
Result:
Processing info:
model: mobilenet-v1-1.0-224
launcher: dlsdk
launcher tags: FP32
device: CPU
dataset: imagenet_1000_classes
OpenCV version: 4.1.2-openvino
IE version: 2.1.custom_releases/2019/R3_ac8584cb714a697a12f1f30b7a3b78a5b9ac5e05
Loaded CPU plugin version: 2.1.32974
2000 objects processed in 19.012 seconds
accuracy@top1: 0.15%
accuracy@top5: 0.80%
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi whung6,
Thank you for reaching out, we are still working on this issue.
We will contact you as soon as possible.
Best regards,
David C.
Intel Customer Support Technician
A Contingent Worker at Intel
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi whung6,
I apologize for the delay in our response. The development team has made changes to the Accuracy Checker Tool and introduced a Post-Training Optimization tool in the latest OpenVINO™ toolkit 2020.1 release.
Could you try using the two tools with the new release and let us know if you continue to see the same behavior?
You can download the OpenVINO™ toolkit 2020.1 release from the download page.
David C.
Intel Customer Support Technician
A Contingent Worker at Intel
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page