- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Hi
I use ifort compiler. in my code i need random integer number between 1<= i <=64.
i used random_number(x) and it is between 0<x<1. then for my purpose i use this transformation
i = floor(64*x) + 1
but when i use this transformation sometimes i = 65. after debug my code i find that when x = 0.9999
this mistake is happened.I guess the problem is due to rounding error. how to avoid from this mistake?
コピーされたリンク
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
That seems like very unexpected behavior. I find this very concerning since I depend on floor working properly in my programs.
Can you provide a small reproducer? Also, what version of compiler?
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Indeed, you need to provide a reproducer. The only way for floor(64*x) to equal 64 is for x to be equal to 1, and RANDOM_NUMBER is supposed to never return 1; call random_number(x) is supposed to return x such that 0 <= x < 1. Here is a test program that does not use RANDOM_NUMBER that you can use to test your compiler:
program tstflr implicit none real x,dx integer i,ix ! dx=16.0*epsilon(x) do x = 1.0 -dx if(x == 1.0)stop if(floor(64*x) >= 64)then write(*,*)'When x = ',x,' floor(64*x) exceeds 63' stop end if write(*,'(1x,2ES15.8)')x,dx dx=0.5*dx end do end program
The output that I get from it:
9.99998093E-01 1.90734863E-06 9.99999046E-01 9.53674316E-07 9.99999523E-01 4.76837158E-07 9.99999762E-01 2.38418579E-07 9.99999881E-01 1.19209290E-07 9.99999940E-01 5.96046448E-08
This shows that x went through several values > 0.9999 before it became indistinguishable from 1.0 in single precision.
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Laura S. wrote:
That seems like very unexpected behavior. I find this very concerning since I depend on floor working properly in my programs.
Can you provide a small reproducer? Also, what version of compiler?
my compiler version is 15.0.0 and 20140723
this is my code and if this mistake don't occur then in line 56 n1 must be printed as 0
but n1 printed as 2
program simple_ising implicit none integer, parameter :: n = 64 real, parameter :: t = 2.269 integer :: s( 1:n , 1:n ) real :: x, y real :: prob real :: finish, start integer :: i, j, ix, iy, r, l, u, d, mag, m1, mn, delta, en, n1 open(unit=1, file='a3') call cpu_time(start) mag = 0 en = 0 ! intial state is random call random_seed do i = 1, n, 1 do j = 1, n, 1 s(i,j) = -1 call random_number(x) if ( x .gt. 0.5 ) then s(i,j) = 1 end if end do end do mag = sum(s) print*,mag/real(n*n) n1=0 do i = 1, n*n, 1 do j = 1, n*n, 1 call random_number(x) ix = floor( n*x + 1.0 ) call random_number(y) iy = floor( n*y + 1.0) r = ix + 1 ; l = ix -1 ; u = iy + 1 ; d = iy - 1 if ( ix + 1 .gt. n ) r = 1 if ( ix - 1 .lt. 1 ) l = n if ( iy + 1 .gt. n ) u = 1 if ( iy - 1 .lt. 1 ) d = n if ( ix .gt. n .or. iy .gt. n) n1=n1+1 mn = s( r, iy) + s( l, iy) + s( ix, u) + s( ix, d ) delta = mn * s( ix, iy ) !delta=0 prob = exp((-2*delta)/t) !prob=1.1 call random_number(x) if ( x .lt. prob ) then s(ix,iy) = -s(ix,iy) en = en + 2*delta mag = mag + 2*s(ix,iy) end if end do write(1,*) i, mag/real(n*n), en/real(n*n) !pause end do call cpu_time(finish) print*,n1, (finish-start) end program simple_ising
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
On Line-48, instead of ix = floor( n*x + 1.0 ), use ix = floor( n*x) + 1. Similarly for iy on Line-48. The following test program illustrates the difference and the importance of truncation immediately after multiplying and before adding 1:
program tflr implicit none integer ix1,ix2 real x ! x=nearest(1.0,-1.0) ix1=floor(64*x+1) ix2=floor(64*x)+1 print *,ix1,ix2 end program
Note that the FLOOR function does not in general have the property
floor(A + B) = floor(A) + floor(B)
and, therefore, you have to write your program accordingly.
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
mecej4 wrote:
On Line-48, instead of ix = floor( n*x + 1.0 ), use ix = floor( n*x) + 1. Similarly for iy on Line-48. The following test program illustrates the difference and the importance of truncation immediately after multiplying and before adding 1:
program tflr implicit none integer ix1,ix2 real x ! x=nearest(1.0,-1.0) ix1=floor(64*x+1) ix2=floor(64*x)+1 print *,ix1,ix2 end programNote that the FLOOR function does not in general have the property
floor(A + B) = floor(A) + floor(B)
and, therefore, you have to write your program accordingly.
yes. but in this case this property is true
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
mohammad b. wrote:
Quote:
mecej4 wrote:
On Line-48, instead of ix = floor( n*x + 1.0 ), use ix = floor( n*x) + 1. Similarly for iy on Line-48. Note that the FLOOR function does not in general have the property
floor(A + B) = floor(A) + floor(B)
and, therefore, you have to write your program accordingly.
yes. but in this case this property is true
No, it is not; if you can advance logical arguments to support that claim, I'll revise my opinion. On the other hand, making the changes (to replace floor(x*64.0+1.0) by floor(x*64)+1, and similarly with y) to your program in #4 and running shows that my explanation is correct (of how ix or iy exceeded the intended range). The result displayed for n1 is 0 after the changes, but you may see various non-zero values in your original program. If you wish to track down this issue more fully, you may set the random number seed to a predetermined value at the beginning of the program.
