- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
Hello there
I am looking for a shift and add style Radix-10 multiplier for Quartus II. Does anyone have some coding I could use to make some comparisons, it doesn't have to go at 100mph, I just need to make some aspect ratio comparisons. Thanks WillLink kopiert
5 Antworten
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
You cant shift BCD numbers. you cant add them either. (easily anyway).
Wouldnt it be best to do a BCD -> binary conversion, do the multiplication, and then convert back?- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
Yea I'd imagine that would work just fine
Basically I'm looking for a solution to the problem in Pirhami' 'Computer Arithmetic' problem 10.16a. It is essentially a radix-16 multiplier with a BCD input, that sounds very similar to your suggestion. It only has to be 16 x 16 bit multiplication.- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
a 16x16 multiplaction will take just a single multiplier, with the additional logic for the BCD conversion. Not very expensive.
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
As Tricky suggested, you need to do a BCD->binary conversion.
- Als neu kennzeichnen
- Lesezeichen
- Abonnieren
- Stummschalten
- RSS-Feed abonnieren
- Kennzeichnen
- Anstößigen Inhalt melden
--- Quote Start --- You cant shift BCD numbers. you cant add them either. (easily anyway). Wouldnt it be best to do a BCD -> binary conversion, do the multiplication, and then convert back? --- Quote End --- You can shift BCD numbers, but only by '4' bits at a time, which comes down by multiplying by 10 - decimal that is :) I think that going from BCD to binary and back, is a bit cheating? I peeked into the exercise (via the 'look inside' function on Amazon ...). Interesting book, but pricey :( Just for the fun of doing it in BCD: you can do long multiplication per BCD digit as you would do per bit in standard binary. The adders would have to be BCD-capable, working with blocks of 4 binary bits and with appropriate carry-rules. I'm not sure that the effort in converting from BCD to Binary and back to BCD would take less resources, or be any faster?

Antworten
Themen-Optionen
- RSS-Feed abonnieren
- Thema als neu kennzeichnen
- Thema als gelesen kennzeichnen
- Diesen Thema für aktuellen Benutzer floaten
- Lesezeichen
- Abonnieren
- Drucker-Anzeigeseite