- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Hi!
I want to use LDLT to decompose a large sparse matrix of mine. I read the manual of MKL and found that there is Bunch-Kaufman decomposition in LAPCAK, which can achieve the same effect as LDLT decomposition, but LAPCK in MKL seems to only support the decomposition of dense matrices .
Is there any way in MKL to decompose a large sparse matrix using LDLT?
Thank you, your help is invaluable to me!
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Hi Nero,
Thanks for reaching out to us.
Could you please let us know if using "Direct Sparse Solver (DSS) Interface Routines" matches your use case (dss_factor_real, dss_factor_complex - which also uses LDLT factorization)?
For more details please refer to the below link
Regards,
Vidya.
コピーされたリンク
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Hi Nero,
Thanks for reaching out to us.
Could you please let us know if using "Direct Sparse Solver (DSS) Interface Routines" matches your use case (dss_factor_real, dss_factor_complex - which also uses LDLT factorization)?
For more details please refer to the below link
Regards,
Vidya.
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Thank you, I found this function in DSS, and I found that PARDISO can also be decomposed. May I ask you, is the efficiency of DSS and PARDISO the same?
- 新着としてマーク
- ブックマーク
- 購読
- ミュート
- RSS フィードを購読する
- ハイライト
- 印刷
- 不適切なコンテンツを報告
Hi Nero,
>>I found this function in DSS, and I found that PARDISO can also be decomposed.is the efficiency of DSS and PARDISO the same?
Speaking in terms of efficiency, the MKL manual says Pardiso is efficient.
"The Intel® oneAPI Math Kernel Library PARDISO package is a high-performance, robust, memory efficient, and easy to use software package for solving large sparse linear systems of equations on shared-memory multiprocessors. "
Reference Link:
I hope it answers your question.
Thanks for accepting the solution.
As the issue is resolved we are closing this thread. Please post a new question if you need any additional assistance from Intel as this thread will no longer be monitored.
Have a Nice Day!
Regards,
Vidya.