- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Hi,
I'm trying to convert a Caffe network with AbsVal layer but getting an error.
Network git at: https://github.com/guozhongluo/head-pose-estimation-and-face-landmark
Can someone please advice ?
Thanks,
Tsahi.
Link Copied
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
@tsahim I can't see AbsVal layer in this project as well as weight (.caffemodel file). Please explain how do you manage to convert this network for NCS so we can triage the problem.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Wrong link sorry,
this is the library at: https://github.com/jiangwqcooler/face-landmark
and this is the orig proto.txt (before shape mod ):
name: "landmark"
input: "data"
input_dim: 1
input_dim: 1
input_dim: 60
input_dim: 60
#
the actual net
layer 1
layer {
name: "Conv1"
type: "Convolution"
bottom: "data"
top: "Conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 20
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "ActivationTangH1"
bottom: "Conv1"
top: "ActivationTangH1"
type: "TanH"
}
layer {
name: "ActivationAbs1"
bottom: "ActivationTangH1"
top: "Abs1"
type: "AbsVal"
}
layer {
name: "Pool1"
type: "Pooling"
bottom: "Abs1"
top: "Pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "Conv2"
type: "Convolution"
bottom: "Pool1"
top: "Conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 48
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "ActivationTangH2"
bottom: "Conv2"
top: "ActivationTangH2"
type: "TanH"
}
layer {
name: "ActivationAbs2"
bottom: "ActivationTangH2"
top: "Abs2"
type: "AbsVal"
}
layer {
name: "Pool2"
type: "Pooling"
bottom: "Abs2"
top: "Pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer 3
layer {
name: "Conv3"
type: "Convolution"
bottom: "Pool2"
top: "Conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "ActivationTangH3"
bottom: "Conv3"
top: "ActivationTangH3"
type: "TanH"
}
layer {
name: "ActivationAbs3"
bottom: "ActivationTangH3"
top: "Abs3"
type: "AbsVal"
}
layer {
name: "Pool3"
type: "Pooling"
bottom: "Abs3"
top: "Pool3"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer 4
layer {
name: "Conv4"
type: "Convolution"
bottom: "Pool3"
top: "Conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 80
pad: 0
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "ActivationTangH4"
bottom: "Conv4"
top: "ActivationTangH4"
type: "TanH"
}
layer {
name: "ActivationAbs4"
bottom: "ActivationTangH4"
top: "Abs4"
type: "AbsVal"
}
#
layer {
name: "Dense1"
type: "InnerProduct"
bottom: "Abs4"
top: "Dense1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 512
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "ActivationTangH5"
bottom: "Dense1"
top: "ActivationTangH5"
type: "TanH"
}
layer {
name: "ActivationAbs5"
bottom: "ActivationTangH5"
top: "Abs5"
type: "AbsVal"
}
layer {
name: "Dense3"
type: "InnerProduct"
bottom: "Abs5"
top: "Dense3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 136
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
@tsahim I believe that we may not yet support the Absolute Value layer. Can you post the error that you are receiving?
- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page